پاسخ‌های فیزیولوژیک نهال‌های یک‌ساله سرو نقره‌ای (Cupressus arizonica) و خمره‌ای (Platycladus orientalis) به خاک‌های آلوده به سرب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مسئول اجرای طرح های جنگلداری

2 عضو هیات علمی گروه جنگلداری دانشگاه کشاورزی و منابع طبیعی ساری

3 عضو هیات علمی دانشگاه کشاورزی و منابع طبیعی ساری

چکیده

استفاده از گونه‌های درختی در گیاه‌پالایی بسیار ارزشمند است، ولی لازمه آن کسب اطلاع از سازوکار فیزیولوژیک و پتانسیل گونه‌های مختلف است. بنابراین در این تحقیق توانایی گیاه پالایی دو گونه سوزنی‌برگ سرو نقره‌ای و خمره‌ای در مرحله نهال مورد ارزیابی قرار گرفت. در همین راستا نهال‌های یک‌ساله دو گونه مذکور در طول یک فصل رویش در خاک‌های آلوده به سرب با غلظت‌های 0، 100، 200، 300، 400 و 500 میلی‌گرم در کیلوگرم خاک قرار گرفت و شاخص‌های مختلفی از قبیل تبادلات گازی، پارامترهای فیزیولوژیک و رشد و تولید در دو گونه مورد بررسی قرار گرفت. تجزیه‌وتحلیل‌های آماری نشان داد که نرخ فتوسنتز و پارامترهای فیزیولوژیک دو گونه متأثر از اثرات منفی آلودگی سرب قرار گرفت، ولی این ضعف در متابولیسم گیاه سبب مرگ‌ومیر نهال‌های هیچ‌کدام از دو گونه نشد. میزان رشد و تولید زی‌توده در گونه سرو نقره‌ای کمتر دستخوش اثرات منفی قرار گرفت که نشان از مقاومت بیشتر این گونه دارد. درنهایت می‌توان اذعان داشت که دو گونه سرو نقره‌ای و خمره‌ای سازوکار متفاوتی نسبت به آلودگی سرب دارند، ولی توانایی و مقاومت گونه سرو نقره‌ای بیشتر است که بی-شک مطالعات جامع‌تر بویژه در غلظت‌های شدیدتر و دوره‌های طولانی‌تر برای تأیید نهایی این یافته لازم است.

کلیدواژه‌ها


عنوان مقاله [English]

Physiological responses of Cupressus arizonica and Platycladus orientalis one-year-old seedlings in soil polluted with lead

چکیده [English]

The use of woody plants for phytoremediation is so valuable but before that studying on their mechanism and resistance potential of different species is necessary. In the current research, we surveyed resistance potential of two conifer species such as Cupressus arizonica and Platycladus orientalis in response to lead contamination. In this regard, one-year old seedlings of both species were grown under different concentrations of lead such as 0, 100, 200, 300,400 and 500 lead milligram per soil kilogram during a growth season and the end of the experiment time some gas exchange, physiological and growth parameters were studied on the all treatments. Statistical analysis showed that photosynthesis and physiological parameters negatively and significantly were affected by the lead contamination but the weak of the plant metabolism didn’t led to seedling mortality. The negative effects of lead contamination on growth and seedling biomass of C. arizonica was less than P. orientalis that the result showed more resistance of the species. Finally it can be concluded that each species has different mechanism in response to lead contamination but C. arizonica is more resistant in compare to C. arizonica. Surely comprehensive research is necessary for make a final decision.

کلیدواژه‌ها [English]

  • lead contamination
  • Growth
  • conifer
  • Photosynthesis
  • woody plant
[1]. Luo, Z., Tian, D., Ning, C., Yan, W., Xiang, W., and Peng, C. (2015). Roles of Koelreuteria bipinnata as a
suitable accumulator tree species in remediating Mn, Zn, Pb, and Cd pollution on Mn mining wastelands in
southern China. Environmental Earth Sciences, 74(5): 4549-4559.
[2]. Ghani, A., Shah, A.U., and Akhtar, U. (2010). Effect of lead toxicity on growth, Chlorophyll and lead (Pb+)
contents of two varieties of maize (Zea mays L.). Pakistan Journal of Nutrition, 9(9): 887-891.
[3]. Escobar, M.P., and Dussán, J. (2016). Phytoremediation potential of chromium and lead by Alnus acuminata
subsp. Acuminate. Environmental Progress and Sustainable Energy, 35(4): 942-948.
[4]. Barceló, J., and Poschenrieder, C. (2003). Phytoremediation: principles and perspectives. Contributions to
Science, 2 (3): 333-344.
[5]. Dickinson, N.M., and Pulford, I.D. (2005). Cadmium phytoextraction using short-rotation coppice Salix: the
evidence trail. Environment International, 31(4): 609-613.
[6]. Keller, C., Hammer, D., Kayser, A., Richner, W., Brodbeck, M., and Sennhauser, M. (2003). Root
development and heavy metal phytoextraction efficiency: comparison of different plant species in the field.
Plant and Soil, 249(1): 67-81.
[7]. Pulford, I.D., and Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees-a review .
Environment International, 29(4): 529-540.
[8]. Aliyari, F., Soltani, A., and Zarafshar, M. (2015). Modeling of Seed Germination of Platycladus orientalis in
Response to The Interaction of Temperature and Water Potential. Journal of Zagros Forests Researche, 1(2): 33-45.
[9]. Mozafari, S.T., Mataji, A., Babaei Kafaki, S., and Shirvani A. (2014). Comparison of lead, cadmium, and
nickel uptake by different organs of Thuja orientalis and Cupressus arizonica from Alborz Industrial Area,
Ghazvin province. Renewable Natural Resources Research, 5(1): 67-75.
[10]. Khosropour, E., Attarod, P., Shirvani, A., and Matinzadeh, M. (2011). Rainfall interception loss and
chemical composition of throughfall in Cupressus arizonica plantation in Chitgar forest park. Forest science
and engineering, 1(2): 32-40.
[11]. Zarafshar, M., Akbarinia, M., Hosseiny, S.M., and Rahaie, M. (2016). Drought Resistance of Wild Pear
(Pyrus boisseriana Buhse.). Journal of forest and wood products, 69(1): 97-110.
[12]. Medrano, H., Tomás, M., Martorell, S., Flexas, J., Hernández, E., Rosselló, J., Pou, A., Escalona, J.M., and
Bota, J. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of
leaf WUE as a selection target. The Crop Journal, 3(3): 220-228.
[13]. Heckathorn, S.A., Mueller, J.K., Laguidice, S., Zhu, B., Barrett, T., Blair, B., and Dong, Y. (2004).
Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. American Journal of
Botany, 91(9): 1312-1318.
[14]. Amini, F., and Amirjani, M.R. (2013). Effect of Ni and Pb on Chlorophyll content and metals accumulation
in Medicago sativa. Journal of Crop Production and Processing, 2(6): 11-19.
[15]. Sharma, P., and Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1): 35-52.
[16]. Choudhary, M., Jetley, U.K., Abass Khan, M., Zutshi, S., and Fatma, T. (2007). Effect of heavy metal
stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina
platensis-S5. Ecotoxicology and Environmental Safety, 66(2): 204-209.
[17]. Yerkes, C.N.D., and Weller, S.C. (1996). Diluent volume influences susceptibility of field bindweed
(Convolvulus arvensis) biotypes to glyphosate. Weed technology, 10(3): 565-569.
[18]. Pajević, S., Borišev, M., Nikolić, N., Krstić, B., Pilipović, A., and Orlović, S. (2009). Phytoremediation
capacity of poplar (Populus spp.) and willow (Salix spp.) clones in relation to photosynthesis. Archives of
Biological Sciences, 61 (2): 239-247.
[19]. Tanvir, M.A., and Siddiqui, M.T. (2010). Growth performance and cadmium (Cd) uptake by Populus
deltoides as irrigated by urban wastewater. Pakistan Journal of Agricultural Sciences, 47(3): 235-240.

[20]. Sinha, S., Pandey, K., Gupta, A., and Bhatt, K. (2005). Accumulation of metals in vegetables and crops grown in
the area irrigated with river water. Bulletin of Environmental Contamination and Toxicology, 74(1): 210-218.
[21]. Begonia, G.B., Davis, C.D., Begonia, M.F.T., and Gray, C.N. (1998). Growth responses of Indian Mustard
[Brassica juncea (L.) Czern.] and its phytoextraction of lead from a contaminated soil. Bulletin of
Environmental Contamination and Toxicology, 61(1): 38-43.
[22]. Kadukova, J., Manousaki, E., and Kalogerakis, N. (2008). Pb and Cd accumulation and phyto-excretion by
salt cedar (Tamarix smyrnensis Bunge). International journal of phytoremediation, 10(1): 31-46.