بررسی امکان ساخت صندلی استاندارد از اسکریمبرکامپوزیت حاصل از ضایعات روکش و لایة چوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 گروه علوم و صنایع چوب و کاغذ، دانشکدة فنی، واحد بجنورد، دانشگاه آزاد اسلامی، بجنورد، ایران.

3 گروه محصولات بیولوژیکی پایدار، دانشگاه ایالتی می‌سی‌سی‌پی، ایالت می‌سی‌سی‌پی، آمریکا.

10.22059/jfwp.2024.377211.1297

چکیده

در این تحقیق، امکان ساخت صندلی استاندارد از تختة اسکریمبر‌های حاصل از ضایعات روکش و لایه‌های چوبی صنوبر و راش از خط تولید کارخانجات تخته لایه‌سازی مورد ارزیابی قرار گرفت. در این فرآیند، ضایعات روکش و لایة چوبی در جهت طولی برش داده شدند و به نوارهای باریک اسکریمبر تبدیل شدند. سپس تخته‌هایی با دانسیتة 0/75 گرم بر سانتی‌متر مکعب و ضخامت 12 میلی‌متر به‌صورت پنج لایه و با آرایش اسکریمبر‌های عمود بر هم ساخته و ویژگی‌های فیزیکی و مکانیکی این فرآورده براساس استانداردهای مربوطه مورد ارزیابی قرار گرفتند. در ساخت اسکریمبرکامپوزیت چسب‌های اوره فرمالدهید و فنل فرمالدهید به میزان 12 درصد وزن خشک چوب استفاده گردید. براساس ارزیابی نتایج ویژگی‌های فیزیکی و مکانیکی تخته‌های اسکریمبر، برای ساخت صندلی با پشتی قوسدار از تخته‌های ساخته شده با رزین فنل فرمالدهید استفاده شد. پایه‌های صندلی از تخته‌هایی با ضخامت 5 سانتی‌متر با آرایش موازی اسکریمبر‌ها در ضخامت و استفاده از رزین فنل فرمالدهید ساخته شد. صندلی‌ها از تخته‌های ساخته شده تولید شد و براساس استاندارد ملی ایران مورد ارزیابی کیفی قرار گرفتند. نتایج ارزیابی‌ها نشان دادند که صندلی‌های ساخته شده با اسکریمبر‌های حاصل از ضایعات روکش و لایه‌های چوبی الزامات استحکام مطابق با استانداردهای ملی را دارند. بنابراین می‌توان گفت با اسکریمبر‌های حاصل از ضایعات روکش و لایه‌های چوبی می‌توان فرآوردة مهندسی شده با خواص فیزیکی و مکانیکی در حد استاندارد تولید نمود و از آن در ساخت صندلی چوبی استاندارد استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the possibility of making a standard chair from scrimber composite obtained from veneer and wooden layer waste

نویسندگان [English]

  • Mehdi Arefkhani 1
  • Hamid Zarea Hosseinabadi 1
  • Maliheh Akhtari 2
  • Mostafa Mohammadabadi 3
1 Department of Wood and Paper Science and Technology, University College of Agriculture and Natural Resources, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
2 Department of Wood Science & Technology, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
3 Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, USA.
چکیده [English]

In this research, the possibility of producing standard chairs from scrimber composites made from waste poplar and beech veneer, as well as wood layers from plywood factories, was evaluated. In this process, the waste veneer and wood layers were cut longitudinally and converted into thin veneer scrimbers. Panels with a density of 0.75 g/cm³ and a thickness of 12 mm, consisting of five layers with veneer scrimbers arranged perpendicular to each other, were then constructed, and the physical and mechanical properties of this product were evaluated according to the relevant standards. For the composite production, urea-formaldehyde and phenol-formaldehyde adhesives were used at a rate of 12% of the dry wood weight. Based on the results of physical and mechanical evaluations, the panels made with phenol-formaldehyde adhesive were selected to make chairs with curved backs. The chair legs were made from boards with a thickness of 5 centimeters and parallel veneer scrimber arrangements in the thickness of the board. The produced chairs were qualitatively evaluated according to the national Iranian standard. The evaluation results showed that the chairs made with veneer scrimbers from waste veneer and wood layers met the strength requirements according to national standards. Therefore, it can be concluded that engineered products with standard physical and mechanical properties can be produced using veneer scrimbers from veneer and wood layer waste and can be used in the production of standard wooden chairs.

[1] Marchenko, O., Solomin, S., Kozlov, A., Shamanskiy, V., & Donskoy, I. (2020). Economic efficiency assessment of using wood waste in cogeneration plants with multi-stage gasification. Applied Sciences, 10(21), 7600.
[2] Grzegorzewska, E., Burawska-Kupniewska, I., & Boruszewski, P. (2020). Economic profitability of particleboards production with a diversified raw material structure. Maderas: Ciencia y Tecnologia, 22(4), 537-548.
[3] Nguyen, D., Luedtke, J., & Nopens, M. (2023). Production of wood-based panel from recycled wood resource: a literature review. European Journal of Wood Product, 81(1), 557-570.
[4] Singh, D.P., Barani, L.Z., Woodruff, M.A., Parker, T.J., Steck, R. & Peake, J.M. (2017). Design and fabrication of stair case climber for physically challenged person. Materials and Design Engineering, 9(2), 175-188.
[5] Mousavi Hoseyni, S.M.J., Zarea Hosseinabadi, H., Dalvand, M., & Moradpour, P. (2022). Numerical and experimental investigation of stress carrying capacity of reinforced L-shaped corner joints with corner block in wooden chair under diagonal tension. Journal of Forest and Wood Products, 75 (3). (In Persian)
[6] He, M.J., Zhang, J., Li, Z., & Li M.L. (2016). Production and mechanical performance of Scrimber composite manufactured from poplar wood for structural applications. Journal of Wood Science. 62(6), 429-440.
[7] Li, Y., Liu, Y., & Zhao, H. (2020). Properties and applications of wood-scrimber composites. Composites Part B: Engineering, 185 (3), 107706.
[8] Figueiredo, A.M., Almeida, E.A., & Santos, P.J. (2019). Technology and environmental impact of wood scrimber composites. Journal of Cleaner Production, 276 (5), 576-584.
[9] Liu S., Lin Q., Yu Y., & Yu W. (2022). Preparation and characterization of wood scrimber based on eucalyptus veneers complexed with Ferrous Ions. Polymers. 14(19), 4217.
[10] Zhuang, B., Cloutier, A., & Koubaa, A. (2022). Effects of strands geometry on the physical and mechanical properties of oriented strand boards (OSBs) made from black spruce and trembling aspen, BioResources 17(3), 3929-3943.
[11] Hitka, M., Joscak, P., Langova, N., Kristak, L., & Blaskova, S. (2018). Load-carrying capacity and the size of chair joints determined for users with a higher body weight. BioResources, 13 (3): 6428-6443.
[12] Standard ASTM D1037-12 (2020) Standard test methods for evaluating properties of wood-base fiber and particle panel materials, American Society for Testing and Materials.
[13] Standard test methods Furniture. Strength, durability and safety requirements for domestic seating.BS EN 12520, DC 15/30320768, (2010).
[14] Standard test Furniture. Seating. Determination of stability.BS EN 1022, ICS 97.140, 2018.
[15] Standard test methods Furniture Seating. Test methods for the determination of strength and durability. BS EN 1728, DC 10/30228316, (2012).
[16] Kurt, R., Cavus, V. (2011). Manufacturing of parallel strand lumber (PSL) from rotary peeled hybrid poplar veneers with phenol formaldehyde and urea formaldehyde adhesives. Wood Research Journal, 56 (1): 137-144.
[17] Mamza, P.A., Ezeh, E.C., Gimba, E. & Arthur, D.E. (2014) Comparative study of phenol formaldehyde and urea formaldehyde particleboards from wood waste for sustainable environment. International Journal of Scientific & Technology Research, 3, 53-61.
[18] Prasetiyo K.W., Astari, L., Syamani, F.A., & Subyakto (2019) Physical and mechanical properties of urea formaldehyde and phenol formaldehyde-bonded particleboards made from corn stalk, IOP Conference Series: Earth and Environmental Science, Volume 374, The 8th International Symposium for Sustainable Humanosphere 18–19 October, Medan, Indonesia.
[19] Ang, A.F., Ashaari, Z., Hua Lee, S., Tahir, P.M., & Halis, R. (2019). Lignin-based copolymer adhesives for composite wood panels – A review, International Journal of Adhesion and Adhesives, 95(3), 102408.
[20] Savov, V., Antov, P., & Trichkov, N. (2021). Properties of high-density fiberboards bonded with urea formaldehyde and phenol formaldehyde resins. Journal of Innovation in Woodworking Industry and Engineering Design, 13(16), 2775.
[21] Efendy, D.M., & Shnawa H.H. (2015). Effect of adhesive type on the mechanical properties of wood composites: A Review. Journal of Adhesion Science and Technology, 29(16), 1756-1776.
[22] Bayat Kashkoli, A. Jamshed zadeh, M. (2014). Comparing the mechanical strength of wooden chairs constructed using two patterns and mortise and tenon and dowel joints. Iranian Journal of Wood and Paper Science Research, 29 (1), 67-78. (In Persian)
[23] Haviarova, E., Eckelman, C.A., & Erdil, Y. (2001). Design and testing of environmentally friendly wood school chairs for developing countries. Forest Product Journal, 51(3): 58-64.