[1] Mihajlovic, S.R., Vucinic, D.R., Sekulic, Z.T., Milicevic, S.Z. & Kolonja, B.M. (2013). Mechanism of stearic acid adsorption to calcite. Powder Technology, 16: 208-245.
[2] Jeon, C.W., Park, S., Bang, J.H., Chae, S., Song, K., & Lee, S.W. (2018). Nonpolar surface modification using fatty acids and its effect on calcite from mineral carbonation of desulfurized gypsum. Coatings, 8(1), 1-13.
[3] Maraveas, C. (2020). Production of sustainable construction materials using agro-wastes. Materials, 13(2): 1-29.
[4] Gutierrez-Gonzalez, S., Gadea, J., Rodriguez, A., Blanco-Varela, M., & Calderon, V. (2012). Compatibility between gypsum and polyamide powder waste to produce lightweight plaster with enhanced thermal properties. Construction and Building Materials, 34: 179-185.
[5] del Rio Merino, M., Saez, P.V., Longobardi, I., Astorqui, J.S.C., & Porras-Amores, C. (2019). Redesigning lightweight gypsum with mixes of polystyrene waste from construction and demolition waste. Journal of Cleaner Production, 51: 144-220.
[6] Dolezelova, M., Scheinherrova, L., Krejsova, J., Keppert, M., Cerny, R., & Vimmrova, A. (2021). Investigation of gypsum composites with different lightweight fillers. Construction and Building Materials, 297: 1-14.
[7] Guna, V., Yadav, C., Maithri, B., Ilangovan, M., Touchaleaume, F., & Saulnier, B. (2021). Wool and coir fiber reinforced gypsum ceiling tiles with enhanced stability and acoustic and thermal resistance. Journal of Building Engineering, 41: 1-9.
[8] Başpınar, M.S., & Kahraman, E. (2011). Modifications in the properties of gypsum construction element via addition of expanded macroporous silica granules. Construction and Building Materials, 25(8): 3327-3333.
[9] Kuqo, A., & Mai, C. (2021). Mechanical properties of lightweight gypsum composites comprised of seagrass Posidonia oceanica and pine [Pinus sylvestris] wood fibers. Construction and Building Materials, 282: 1-9.
[10] Hosseinkhani, H. (2015). Gypsum bounded board production reinfoced with Date Palm Phoenix dactylifera L. pruning residues fibers. Iranian Journal of Wood and Paper Science Research, 30(1): 60-71. (In Persian).
[11] Hamza, S., Saad, H., Charrier, B., & Ayed, N. (2013). Charrier-El Bouhtoury F. Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products, 49: 357-365.
[12] Heryanto, R., Hasan, M., Abdullah, E.C., & Kumoro, A.C. (2007). Solubility of stearic acid in various organic solvents and its prediction using non-ideal solution models. Science Asia, 33: 469-472.
[13] Rostamian, F., Etesami, N., & Haghgoo, M. (2022). Control of Electronic board temperature using heat sink containing stearic acid as a phase change material. Journal of Mechanical Engineering, 51(4): 433-441.
[14] Rocha, C., Neto, R.L., Goncalves, V.S., Carvalho, L., & Filho, F. (2003). An investigation of the use of stearic acid as a process control agent in high energy ball milling of Nb-Al and Ni-Al powder mixtures. Materials Science Forum, 120, 144-149.
[15] Al-Busaidi, I.K., Al-Maamari, R.S., Karimi, M., & Naser, J. (2019). Effect of different polar organic compounds on wettability of calcite surfaces. Journal of Petroleum Science and Engineering, 180: 569-583.
[16] Wu, Q., Guo, W., You, S., Bao, X., Luo, H., Wang, H., & Ren, N. (2019). Concentrating lactate-carbon flow on medium chain carboxylic acids production by hydrogen supply. Bioresource Technology, 291: 1-39.
[17] Zurcher, S., & Graule, T. (2005). Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions. Journal of the European Ceramic Society, 25(6): 863-873.
[18] Cheng, L., & Shi, S.b. (2019). Yang L, Zhang Y, Dolfing J, Sun Y-g, et al. Preferential degradation of long-chain alkyl substituted hydrocarbons in heavy oil under methanogenic conditions. Organic Geochemistry, 138: 1-11.
[19] Yogurtcuoglu, E., & Ucurum, M. (2011). Surface modification of calcite by wet-stirred ball milling and its properties. Powder Technology, 214(1): 47-53.
[20] Mason, W.R. (2009). Starch use in foods. Starch, pp. 745-795.
[21] Noorzad, R., & Tanegonbadi, B. (2020). Volume change behavior of stabilized expansive clay with lignosulfonate. Scientia Iranica, 27(4): 1762-1775. (In Persian)
[22] Liu, B., Zhang, J., & Guo, H. (2022). Research progress of polyvinyl alcohol water-resistant film materials. Membranes, 12(3): 1-10.
[23] Aslam, M., Kalyar, M.A., & Raza, Z.A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science, 58(12): 2119-2132.
[24] Guohua, Z., Ya, L., Cuilan, F., Min, Z., Caiqiong, Z., & Zongdao, C. (2006). Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly[vinyl alcohol] blend film. Polymer Degradation and Stability, 91(4): 703-711.
[25] Patti, A., Lecocq, H., Serghei, A., Acierno, D., & Cassagnau, P. (2021). The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing. Journal of Industrial and Engineering Chemistry, 96: 1-33.
[26] Aksogan, O., Resatoglu, R., & Binici, H. (2018). An environment friendly new insulation material involving waste newsprint papers reinforced by cane stalks. Journal of Building Engineering, 15: 33-40.
[27] Toro-Márquez, L.A., Merino, D., & Gutierrez, T.J. (2018). Bionanocomposite films prepared from corn starch with and without nanopackaged Jamaica [Hibiscus sabdariffa] flower extract. Food and Bioprocess Technology, 11: 1955-1973.
[28] Li, X., Xu, D.S., Li, M., Liu, L., & Heng, P. (2016). Preparation of co-spray dried cushioning agent containing stearic acid for protecting pellet coatings when compressed. Drug Development and Industrial Pharmacy, 42(5): 788-795.
[29] Gunasekaran, K., Annadurai, R., & Kumar, P. (2012). Long term study on compressive and bond strength of coconut shell aggregate concrete. Construction and Building Materials, 28(1): 208-2015.