[1]. Shen, Z., Ye, Z., Li, K., & Qi, C. (2021). Effects of coupling agent and thermoplastic on the interfacial bond strength and the mechanical properties of oriented wood strand–thermoplastic composites. Polymers, 13(23), 1-11.
[2]. Rozman, H.D., Tan, K.W., Kumar, R.N., Abubakar, A., Ishak, M., & Ismail, H. (2000). Effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites. European Polymer Journal, 36(7), 1483-1494.
[3]. Xu, K., Li, K., Zhong, T., Guan, L., Xie, C., & Li, S. (2014). Effect of chitosan as biopolymer coupling agent on the thermal and rheological properties of polyvinyl chloride/wood flour composites. Composites Part B: Engineering, 58(2), 392-399.
[4]. Younesi-Kordkheili, H., Pizzi, A., & Niyatzade, G. (2016). Reduction of formaldehyde emission from particleboard by phenolated kraft lignin. The Journal of Adhesion, 92(6), 485-497.
[5]. Younesi-Kordkheili, H., & Pizzi, A. (2020). Ionic liquid- modified lignin as a bio- coupling agent for natural fiber- recycled polypropylene composites. Composite part B- Engineering, 181(2020), 1-6.
[6]. Qi, G., Yang, W., Puglia, D., Wang, H., Xu, P., Dong, W., Zheng, T., & Ma, P. (2020). Hydrophobic, UV resistant and dielectric polyurethane-nanolignin composites with good reprocess ability. Materials and Design, 196(2020), 1-11.
[7]. Yang, W., Ding, H., Qi, G., Li, C., Xu, P., Zheng, T., Zhu, X., Kenny. J.M., Puglia, D., & Ma, P. (2021). Highly transparent PVA/nanolignin composite films with excellent UV shielding, antibacterial and antioxidant performance. Reactive and Functional Polymers, 162(2021), 1-12.
[8]. Mariotti, N. (2014). Combination of esterified kraft lignin and mape as coupling agent for bark/hdpe composites. Journal of Materials Science Research, 3(2), 8-22.
[9]. Luo, S., Cao, J., & Sun, W. (2017). Evaluation of Kraft lignin as natural compatibilizer in wood flour/polypropylene composites. Polymer Composites, 38(11), 2387-2394.
[10]. Younesi-Kordkheili, H., Farsi, M., & Rezazadeh, Z. (2013). Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Composites Part B: Engineering, 44(1), 750-755.
[11]. Deka, B.D., & Maji, T.K. (2012). Effect of nanoclay and ZnO on the physical and chemical properties of wood polymer nanocomposite. Journal of Applied Polymer Science, 124(4), 2919- 2929.
[12]. Younesi-Kordkheili, H., Naghdi, R., & Amiri, M. (2015). Influence of nanoclay on urea–glyoxalated lignin–formaldehyde resins for wood adhesive. The Journal of Adhesion, 93(6), 431-443.
[13]. Younesi-Kordkheili, H. (2017). Improving physical and mechanical properties of new lignin- urea-glyoxal resin by nanoclay. European Journal of Wood and Wood Products, 75(6), 885-891.
[14]. Behroz, R., Younesi-Kordkheili, H., & Kazemi, S. (2012). Physical properties of lignin added wood flour-polypropylene composites: a comparison of direct and solvent mixing techniques. Asian Journal of Chemistry, 24(1), 157-167.
[15]. Chen, Y., Gong, X., Yang, G., Li. Q., & Zhou, N. (2019). Preparation and characterization of a nanolignin phenol formaldehyde resin by replacing phenol partially with lignin nanoparticles. RSC Advances, 9(2020): 29255-29262.
[16]. Qu, Y., Luo, H., Li, H., & Xu. (2015). Comparison on structural modification of industrial lignin by wet ball milling and ionic liquid pretreatment. Journal of Biotechnology Report, 6(2015): 1-7.
[17]. Zikeli, F., Vinciguerra, V., Annibale, A., Capitani, D., Romagnoli, M., and Mugnozza, G.S. (2019). Preparation of lignin nanoparticles from wood waste for wood surface treatment. Nanomaterials, 9(2019): 1-18.
[18] Qu, Y., Luo, H., Li, H., & Xu, J. (2015). Comparison on structural modification of industrial lignin by wet ball milling and ionic liquid pretreatment. Biotechnology Reports, 6(2015): 1-7.
[19]. Younesi-Kordkheili, H., & Pizzi, A. (2022). A Improving the properties of phenol-lignin-glyoxal as a wood adhesive by lignin nanoparticles. European Journal of Wood and Wood Products, 81(2): 507-512.
[20]. Li, Y. (2012). Effect of coupling agent concentration, fiber content, and size on mechanical properties of wood/HDPE composites. International Journal of Polymer Materials, 61(11): 82-890.