بررسی عددی و تجربی ظرفیت تحمل تنش اتصال گوشه‌ای L شکل تقویت‌شده با نبشی در صندلی چوبی زیر بار کشش قطری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج

2 دانشیار، گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج

3 دانش‌آموخته دکتری، گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج

4 استادیار، گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج

10.22059/jfwp.2022.325239.1194

چکیده

اتصالات از اجزای مهم هر سازه هستند و استحکام آنها تضمین‌کنندۀ استحکام سازه است. روش‌های متفاوتی برای تقویت اتصالات مبلمان وجود دارد که با توجه به موقعیت و شکل اتصال از آنها استفاده می‌شود. یکی از روش‌های تقویت اتصالات گوشه‌ای، استفاده از نبشی چوبی است. در این پژوهش تأثیر جنس و حالت فیزیکی نبشی چوبی بر ظرفیت لنگر خمشی اتصال L شکل زیر بار کشش قطری بررسی شده است. به این منظور اتصال‌های L شکل با گونۀ راش با اتصال کام و زبانه ساخته شدند. برای تقویت اتصال‌ها از نبشی با گونۀ راش و صنوبر استفاده شد. نبشی برای گونۀ راش در سه سطح (بدون شیار، با شیار 5/0 و 1 سانتی‌متر) و برای گونۀ صنوبر در دو سطح (بدون شیار و شیار 1 سانتی‌متر) به‌عنوان متغیر انتخاب شد. از اتصال بدون نبشی برای مقایسه استفاده شد. براساس نتایج تجربی، استفاده از نبشی تأثیر معنی‌داری بر ظرفیت تحمل تنش اتصال داشته است. اختلاف معنی‌داری بین جنس گونۀ نبشی مشاهده نشد. بیشترین ظرفیت تحمل تنش اتصال مربوط به اتصال تقویت‌شده با نبشی از گونۀ صنوبر و شیار 1 سانتی‌متر به میزان 3/30 مگاپاسکال و کمترین ظرفیت تحمل تنش مربوط به تیمار شاهد به میزان 06/6 مگاپاسکال بود. نتایج تحلیل عددی نشان داد که بیشینۀ تنش در اتصال‌های تقویت‌شده با نبشی در ناحیۀ شیار اعضای اتصال و همچنین خط چسب نبشی بوده است که این تمرکز تنش سبب شکست اتصال در این نقاط شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical and experimental investigation of stress carrying capacity of reinforced L-shaped corner joints with corner block in wooden chair under diagonal tension

نویسندگان [English]

  • Seyed Mohammad Javad Mousavi Hoseyni 1
  • Hamid Zarea Hosseinabadi 2
  • Mosayeb Dalvand 3
  • Payam Moradpour 4
1 Ph.D. student., Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran.
2 Assoc., Prof., Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran.
3 Ph.D., Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran.
4 Assist., Prof., Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran.
چکیده [English]

Joints are important components of any structure that can be a warranty for the strength of structures. There are different methods for reinforcement of furniture joints that are used according to position and shape of joint. One of the reinforcement methods of corner joints is using wooden corner blocks. Therefore, in this study, the effect of species types and physical situation of wooden corner block on stress carrying capacity of L-shape joint under diagonal tension was investigated numerically and experimentally. For this purpose, L-shape mortise and tenon joints of beech were constructed.. The corner blocks of beech and poplar species were applied to reinforce the joints. The physical situation for beech in three levels (without groove and with grooves 5, and 10 mm) were selected as variables. Also, a control sample (without corner block) was used for comparing. Experimental results have shown that using corner block had a significant effect on stress carrying capacity. There was no significant difference between the species. The maximum stress carrying capacity was obtained of joints that were reinforced with poplar corner block with 10 mm groove depth (30.3 MPa) and the minimum stress carrying capacity was obtained of control sample (6.06 Mpa). Results of numerical analysis have shown that maximum stress of reinforced joints with corner block are in the groove zone of joint members and corner block glue line which this stress concentration caused the failure of members in these zones.

کلیدواژه‌ها [English]

  • Corner joints
  • Experimental investigation
  • Numerical analysis
  • Stress carrying capacity
  • Mortise and tenon
  • Corner block
[1]. Liu, W. Q., and Eckelman, C.A. (1998). Effect of number of fasteners on the strength of corner joints for cases. Forest Products Journal, 48(l):93-95.
[2]. Eckelman, C.A. (1971) Bending strength and moment rotation characteristics of two-pin moment resisting dowel joints. Forest Products Journal, 21(3):35–39.
[3]. Feio, A.O., Lourenço, P.B., and Machado, J.S. (2014) Testing and modeling of a traditional timber mortise and tenon joint. Materials and Structures, 47:213–225.
[4]. Smardzewski, J. (2002). Strength of profile-adhesive joints, Wood Science and Technology, 36(2): 173-183.
[5]. Dzincic, I., and Skakic, D. (2012). Influence of type of fit on strength and deformation of oval tenon-mortise joint. Wood Research, 57(3): 469-477.
[6]. Dzincic, I., and Zivanic, D. (2014). The influence of fit on the distribution of glue in oval tenon mortise joint. Wood Research, 59(2), 297-302.
[7]. Kasal, A., Smardzewski, J., Kuşkun, T. and Erdil, Y.Z. (2016). Numerical analyses of various sizes of mortise and tenon furniture joints. BioResources, 11(3): 6836-6853.
[8]. Tankut, A.N., and Tankut, N. (2005). The effects of joint forms (shape) and dimensions on the strengths of mortise and tenon joints. Turkish Journal of Agriculture and Forestry, 29(6): 493-498.
[9]. Likos, E., Haviarova, E., Eckelman, C.A., Erdil, Y. Z., and Özcifci, A. (2012). Effect of tenon geometry, grain orientation, and shoulder on bending moment capacity and moment rotation characteristics of mortise and tenon joints. Wood and Fiber Science, 44(4): 462-469.
[10]. Derikvand, M., and Ebrahimi, G. (2014). Strength performance of mortise and loose-tenon furniture joints under uniaxial bending moment. Journal of Forestry Research, 25(2): 483-486.
[11]. Koç, K.H., Kizilkaya, K., Erdinler, E.S., and Korkut, D.S. (2011). The use of finite element method in the furniture industry. African Journal of Business Management, 5(3): 855-865.
[12]. Kasal, A. (2006). Determination of the strength of various sofa frames with finite element analysis. Gazi University Journal of Science, 19(4): 191-203.
[13]. Smardzewski, J., and Prekrat, S. (2009). Optimisation of a sofa frame in the integrated cad-cae environment. Electronic Journal of Polish Agricultural Universities, 12(4): 1.
[14]. Horman, I., Hajdarević, S., Martinović, S., and Vukas, N. (2010). Numerical analysis of stress and strain in a wooden chair. Drvna Industrija, 61(3): 151-158.
[15]. Hajdarević, S., and Martinović, S. (2014). Effect of tenon length on flexibility of mortise and tenon joint. Procedia Engineering, 69(2014): 678-685.
[16]. Krzyżaniak, Ł., and Smardzewski, J. (2021). Impact damage response of L-type corner joints connected with new innovative furniture fasteners in wood-based composites panels. Composite Structures, 255: 113008.
[17]. Dalvand, M., Ebrahimi, G., Haftkhani, A.R., and Maleki, S. (2013). Analysis of factors affecting diagonal tension and compression capacity of corner joints in furniture frames fabricated with dovetail key. Journal of Forestry Research, 24(1): 155-168.
[18]. Hu, W.G., Guan, H.Y. (2017a). Study on elastic constants of beech in different stress states. Journal of Forestry Engineering, 2(6): 31-36.
[19]. Smardzewski, J., and Papuga, T. (2004). Stress distribution in angle joints of skeleton furniture. Electronic Journal of Polish Agricultural Universities, 7(1).
[20]. Dalvand, M., Ebrahimi, G., Tajvidi, M., and Layeghi, M. (2014). Bending moment resistance of dowel corner joints in case-type furniture under diagonal compression load. Journal of Forestry Research, 25(4): 981-984.
[21]. Maleki, S., Haftkhani, A.R., Dalvand, M., Faezipour, M., and Tajvidi, M. (2012). Bending moment resistance of corner joints constructed with spline under diagonal tension and compression. Journal of Forestry Research, 23(3): 481-490.