اثر مبداء بذر و تلقیح میکوریزی بر مشخصه‌های رویشی و فیزیولوژیکی نهال‌های فندق در منطقه فندقلو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش، بخش تحقیقات جنگل‌ها و مراتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اردبیل، سازمان تحقیقات، آموزش و ترویج کشاورزی، اردبیل، ایران

2 دانشیار پژوهش، بخش تحقیقات جنگل، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

این تحقیق با هدف احیاء و توسعه توده‌های جنگلی تخریب شده فندق در شرایط دیم در جنگل فندقلوی اردبیل انجام شد. بدین منظور، در اوایل اردیبهشت‌ 1395در نهالستان فندقلوی اردبیل، نو نهال‌های فندق تولید شده از سه مبداء بذری شامل فندقلو ( فندقلوی اردبیل)، مکش ( گیلان) و مکیدی (ارسباران)، با قارچ‌های Rhizophagus irregularis و نیز مایه ‌تجاری Myco‌ root (حاوی قارچ میکوریزی آربوسکولار ،R.irregularis و G. Etunicatum ،Glomus mosseae) تلقیح شدند. سپس، در فروردین‌ 1396، نهال‌های یکنواخت یکساله فندق به اراضی حاشیه جنگل فندقلو (مساحت 6075 مترمربع) منتقل و به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در شرایط دیم مورد آزمایش قرار گرفتند. نتایج پس از چهار سال نشان داد که نهالهای میکوریزی، تولید شده از بذرهای هر سه مبداء، در اغلب صفات مورد بررسی از اندازه‌های بزرگتری نسبت به نهال های تلقیح نشده برخوردار بودند. بیشترین مقدار کلنیزاسیون ریشه نهال‌ها (9/51 درصد)، و همچنین، بزرگترین اندازه‌های اغلب متغیرهای اندازه‌گیری شده به نهال‌های مبدا فندقلو تلقیح شده با قارچ R. irregularis اختصاص داشت. طوری‌که زنده‌مانی 7/52 درصد، رویش قطر یقه 1/82 درصد، رویش ارتفاع 9/58 درصد، هدایت روزنه‌ای2/152 درصد، کارائی مصرف آب 9/272 درصد و محتوای کلروفیل 6/63 درصد نسبت به شاهد (نهال‌های غیر میکوریزی مبدا فندقلو) افزایش داشت.برای تولید نهال فندق در نهالستان و کاشت آن در عرصه‌های تخریب شده این منطقه، نهال تولید شده از مبداء بذر فندقلو همزیست شده با قارچ R. irregularis ، نسبت به نهال‌های با مبداء بذری مکش و مکیدی تلقیح شده با مایه تجاری Myco‌ root ارجحیت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of Seed origin and inoculation with arbuscular mycorrhizal fungi on growth and physiological traits of hazelnut seedlings in Fandoglou area

نویسندگان [English]

  • Younes Rostamikia 1
  • Mohammad Matinizadeh 2
  • Ahmad Rahmani 2
1 Assist., Prof., Forests and Rangelands Research Department, Ardabil Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ardabil, I.R. Iran
2 Assoc., Prof., Forest Research Department, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, I.R. Iran
چکیده [English]

One of the main reasons for the failure of planting projects with hazelnut is climate change and subsequent drought stress in the early years of growth. The aim of this study was to rehabilitate and develop degraded hazelnut forest stands in rainfed conditions in Ardabil hazelnut forest. For this purpose, in early May 2016 in Ardabil hazelnut nursery, new hazelnut potted seedlings produced from three seed sources including Fandoglou (Ardabil Fandoglou forest), Makeh (Aghvalar Gilan forest) and Makidi (Arasbaran forest) were inoculated with fungi Rhizophagus irregularis as well as Mycoroot (containing arbuscular mycorrhizal fungus Glomus mosseae, G. etunicatum and Rhizophagus irregularis). Then, in April 2017, uniform annual hazelnut seedlings were transferred to the lands to Fandoglou forest (area 6075 m2) and were tested in factorial arrangement in a randomized complete block design with three replications of 25 in dryland conditions. The results after four years showed that mycorrhizal seedlings, produced from seeds of all three origins, had larger sizes in most of the studied traits than control seedlings. The highest root colonization of seedlings (51.9%), as well as the largest sizes of most of the measured variables belonged to seedlings of Fandoglou origin inoculated with R. irregularis. Survival, collar diameter growth, height growth, photosynthesis rate, stomatal conductance, water consumption efficiency, and chlorophyll content, respectively, increased by 52.7%, 82.1%, 58.9%, 102%, 152.2%, 272.9%, and 63.6% compared with the control (non-mycorrhizal seedlings of Fandoglou origin). Considering the satisfactory symbiosis of hazelnut seedlings with mycorrhizal fungi, for the production of hazelnut seedlings in Fandoglou forest nursery and its planting in degraded areas of this region, seedlings produced from the origin of Fandoglou seeds coexisted with the R. irregularis is preferred to seedlings with the origin of Makeh and Makidi inoculated with Myco root.

کلیدواژه‌ها [English]

  • Hazelnut
  • Height growth
  • photosynthesis rate
  • Rhizophagus irregularis
  • viability
[1]. Teimoorzadeh, A., Ghorbani, A., and Kavianpoor A.H. (2015). Study on the flora, life forms and chorology of the south eastern of Namin forests (Asi-Gheran, Fandoghloo, Hasani and Bobini), Ardabil province. The Journal of Plant Research. 28(2) 224-458.  
[2]. Rostamikia, Y., and Shsrifi, J. (2019). The Fandoglu Forest, the largest common hazel forest reserve in Iran. Journal of Iran Nature, 6 (3): 90-99.
[3]. Ansari, N., and Seid Akhlagi, S.J. (2009). Comparing of the opinion of rangeland user and expert about factors influencing natural resources degradation in Iran. Rangeland, 3(3): 519-532.
[4]. Clark, J. R., Hemery, G. E., and Savill, P.S. (2008). Early growth and form of common walnut (Juglans regia L.) in mixture with tree and shrub nurse species in southern England. Forestry, 81(5): 631-644.
[5]. Bombeli, J., Zuccherelli, G., Zuccherelli, S., and Capaccio, V. (2002). An investigation of vegetation types and Plantation Structural with Hazelnut, Oak, and Beach in Caldra, Italy. The Malaysian Forester, 66 (1): 58- 69.
[6]. Shaqaqi Afzali, V., and Delfan Abazari, B. (1996). Hazel, the valuable and unknown species of Iranian Forests. Forest and Rangeland, 48:48-51.
[7]. Alguacil, M., Caravaca, F., Diaz-Vivancos, P., Hernandez, J. A., and Roldan, A. (2006). Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant and Soil, 279: 209-218.
[8]. Bender, S., Conen, F., and Van der Heijden, G.A. (2015). Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry Journal, 80: 282–292.
[9]. Binu, N.K., Ashokan, P.K., and Balasundaran, M. (2015). Influence of different arbuscular mycorrhizal fungi and shade on growth of sandal (Santalum album) seedlings. Journal of tropical forest, science 27:158–165.
[10]. Razouk, R., and Kajji, A. (2015). Effect of arbuscular mycorrhizal fungi on water relations and growth of young plum Trees under severe water stress conditions. International Journal of Plant & Soil Science, 5 (5): 300-312.
[11]. Turjaman, M., Santoso, E., Sitepu, I. R., Tawaraya, K., Purnomo, E., Tambunan, R., and Osaki, M. (2009). Mycorrhizal fungi increased early growth of tropical tree seedlings in adverse soil. Indonesian Journal of Forestry Research, 6 (1): 17- 25.
[12]. Rostamikia, Y., Tabari Kouchaksaraei, M., Asgharzadeh, A., and Rahmani, A. (2016). Effects of Glomus intraradies and Thricoderma harzianum on colonization and the growth parameters of Corylus avellana L. seedlings under nursery conditions. Journal of Biodiversity and Environmental Sciences, 6: 250-258.
[13]. Rostamikia, Y., Tabari Kouchaksaraei, M., Asgharzadeh, A., and Rahmani, A. (2017). Biomass allocation, leaf gas exchange and nutrient uptake of hazelnut seedlings in response to Trichoderma harzianum and Glomus intraradices inoculation. Journal of Forest Science, 63 (5): 219 –226.
[14]. Caravaca, F., Barea, J.M., Figueroa, D., and Roldán, A. (2002). Assessing the effectiveness of mycorrhizal inoculation and soil compost addition for enhancing reafforestation with Olea europaea subsp. sylvestris through changes in soil biological and physical parameters, Applied Soil Ecology, 20, 107–118.
[15]. Caravaca, F., Barea, J.M., and Roldán, A. (2002). Synergistic influence of an arbuscular mycorrhizal fungus and organic amendment on Pistacia lentiscus L. seedlings afforested in a degraded semiarid soil. Soil Biology and Biochemistry, 34 (8): 1139-1145.
[16]. Estaun, V., Camprub, A., and Calvet, C. (2003). Nursery and field response of olive tree inoculated with two arbuscular mycorrhiza fungi Glomus intraradices and Glomus mosseae. Journal of the American Society for Horticultural Science, 128 (5): 767-775.
[17]. Renata, G., Danielle Karla, A., Silva, a., Joo Ricardo, G., Oliveiraa Bruno, T., Gotoc Fbio Sérgio, B., Silva, d., Everardo, V.S.B., and Sampaiob Leonor, C. )2012(. Use of mycorrhizal seedlings on recovery of mined dunes in northeastern Brazil. Pedobiologia, 55: 303– 309.
 [18]. Bashan, Y., Salazar. B.G., Moreno, M., Lopez, B.R., and Linderman, R.G. (2012). Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water. Journal of Environmental Management, 15: 102:26-36.
[19]. Bi, Y., Xie, L., Wang, Z., Wang, K., and Liu, W. (2021). Arbuscular mycorrhizal symbiosis facilitates apricot seedling (Prunus sibirica L.) growth and photosynthesis in northwest China. International Journal of Coal Science and Technology, 8, 473–482.
[20]. Rostamikia, Y., Tabari Kouchaksaraei, M., Asgharzadeh, A., and Rahmani, A. (2018). Effect of cold stratification on seed germination traits in three ecotypes of hazelnut (Corylus avellana L.). Forest and Wood Products, 71 (1):1-12.
[21]. Kahneh, E., Lakzian, A., Astaraii, A., and Khavazi, K. (2021). Effects of ectomycorrhizal fungi on phosphorous uptake and growth of Alnus glutinosa seedlings in Guilan province. Forest and Wood Products, 73 (3): 295-304.
[22]. Phillips, J. M., and Hayman, D. S. (1970). Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55:158-161.
[23]. Giovannetti, M., and Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytology, 84:489–500.
[24]. Mc Gonigle, T., Miller, M., and Swan, J. (1990). A new method that gives an objective measure of colonization of roots by vesicular arbuscalar mycorrhizal Fungi. New phytology,115: 495-501.
[25]. Zhang, X., Wu, N., and Li, C. (2005). Physiological and growth responses of Populus davidiana ecotypes to different soil water contents. Arid Environment, 60: 567-579.
[26]. Marcelo, S. M., and Bruce, S. (2009). Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environmental and Experimental Botany, 12: 24-31.
[27]. Hilszczanska.D., Sierota, Z., and Palenzona, M. (2008). New Tuber species found in Poland.  Mycorrhiza,18: 223–226
[28]. Kandeler, E., Marschner, P., Tscherko, D., Gahoonia, T. S., and Nielsen, N.E. (2002). Microbial community composition and functional diversity in the rhizosphere of maize. Plant and Soil, 238:301-312.
[29]. Porcel, R., and Ruiz-Lozano, J. M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55(403):1743-1750.
[30]. Wu, Q. S., and Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology,163: 417-425.