تأثیر روش اختلاط و نانورس بر خواص فیزیکی، مکانیکی و ریخت‌شناسی چندسازۀ چوب پلاستیک حاصل از مخلوط پلی‌اتیلن سبک و سنگین بازیافتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس

2 عضو هیات علمی موسسه تحقیقات جنگلها و مراتع

3 استاد پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

در این پژوهش، تأثیر روش اختلاط و مقدار نانورس بر ویژگی‌های فیزیکی، مکانیکی و ریخت‌شناسی چندسازۀ چوب پلاستیک بررسی شد. چوب پلاستیک با استفاده از مخلوط پلی‌اتیلن‌های بازیافتی (پلی‌اتیلن سبک و سنگین)، نانورس و آرد چوب ساخته شد. مقدار ماتریس پلیمری 60 درصد (34 درصد پلی‌اتیلن سبک بازیافتی و 26 درصد پلی‌اتیلن سنگین بازیافتی) و مقدار مادۀ لیگنوسلولزی 40 درصد و مقدار نانورس در دو سطح وزنی 0 و 3 درصد (بر اساس وزن چندسازه) استفاده شد. برای ساخت نمونه‌ها از دو روش اختلاط همزمان و پیش‌اختلاط مذاب استفاده شد. نتایج نشان داد که ویژگی‌های فیزیکی و مکانیکی نمونه‌های ساخته‌شده به‌روش پیش‌اختلاط مذاب نسبت به نمونه‌های ساخته‌شده به‌روش اختلاط همزمان بهتر است. با افزایش درصد نانورس، خواص مقاومتی کاهش و جذب آب افزایش یافت. نتایج همچنین بیانگر کلوخه‌های نانورس و توزیع نامناسب آن در ماتریس پلیمری بود. در مقایسه با روش اختلاط همزمان، ذرات نانورس در نمونه‌های ساخته‌شده با روش پیش‌اختلاط مذاب، توزیع و پراکنش مناسب‌تری داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of mixing method and nanoclay on physical, mechanical and morphological properties of wood plastic composite made from recycled low and high density polyethylene blends

نویسندگان [English]

  • Saeed Kazemi 1
  • Esmail Ghasemi 3
چکیده [English]

In this study, the effect of mixing method and nanoclay content on the physical, mechanical and morphological properties of wood plastic composite (WPC) were evaluated. Wood plastic composites were produced from recycled polyethylenes (low and high density) mixture, nanoclay and wood flour. The matrix and wood flour content were 60 wt% (LDPE 34% & HDPE 26%) and 40 wt%, respectively. Also, nanoclay was added in two levels 0 and 3 wt%. Simultaneous mixing and premixing method were used to manufacture the samples. The melt premixing samples exhibited superior physical and mechanical properties compared to the samples made by simultaneous mixing method. The composites containing nanoclay exhibited higher water absorption and lower strength properties. The results also indicated nanoclay agglomeration and poor distribution in the polymer matrix. Compared with the simultaneous mixing method, better distribution has been found for nanoclay particles in the samples made from the premixing method. 

کلیدواژه‌ها [English]

  • low density polyethylene
  • High density polyethylene
  • simultaneous mixing melt premixing
  • wood plastic composite
[1]. Kazemi Najafi, S. (2013). Use of recycled plastics in wood plastic composites–A review. Waste management,33(9): 1898-1905.

[2]. Deka, B.K., and Maji, T.K. (2010). Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite. Composites science and technology,70(12): 1755-1761.

[3]. Faker, M., Razavi Aghjeh, M.K., Ghaffari, M., and Seyyedi, S.A. (2008). Rheology, morphology and mechanical properties of polyethylene/ethylene vinyl acetate copolymer (PE/EVA) blends. European Polymer Journal,44(6): 1834-1842.

[4]. Firouzeh, M., Kazemi Najafi, S., and Ghasemi, I. (2011). Production of Wood/Plastic Composites Based on PP/HDPE Blends: Determination of Optimum Conditions. Iranian Journal of Polymer Science and Technology, 24(1): 43-53.

[5]. Kord, B., Ekrami, M., Roohani, M. (2014). Effect of nanoclay particles content on the mechanical properties of wood flour-polypropylene composites using dynamic mechanic thermal analysis. Iranian Journal of Wood and Paper Industries, 5(2): 15-26.

[6]. Le Baillif, M., and Oksman, K. (2009). The effect of processing on fiber dispersion, fiber length, and thermal degradation of bleached sulfite cellulose fiber polypropylene composites. Journal of Thermoplastic Composite Materials, 22(2): 115-133.

[7]. Ghani, M.H.A., and Ahmad, S. (2011). The comparison of water absorption analysis between counterrotating and corotating twin-screw extruders with different antioxidants content in wood plastic composites. Advances in Materials Science and Engineering, vol. 2011, Article ID 406284, 4 pages.

[8]. Abad, M.J., Ares, A., Barral, L., Cano, J., Diez, F.J., García‐Garabal, S., Lopez, J., and Ramirez, C. (2004). Effects of a mixture of stabilizers on the structure and mechanical properties of polyethylene during reprocessing. Journal of Applied Polymer Science,92(6): 3910-3916.

[9]. Zahavich, A.T.P., Latto, B., Takacs, E., and Vlachopoulos, J. (1997). The Effect of Multiple Extrusion Passes During Recycling of High Density Polyethylene. John Wiley and Sons, Inc. Adv in Polym Techn, 16: 11-24.

[10]. Mendes, A.A., Cunha, A.M., and Bernardo, C.A. (2011). Study of the degradation mechanisms of polyethylene during reprocessing. Polymer Degradation and Stability, 96(6): 1125-1133.

[11]. Zhang, M., and Sundararaj, U. (2006). Thermal, rheological, and mechanical behaviors of LLDPE/PEMA/clay nanocomposites: effect of interaction between polymer, compatibilizer, and nanofiller. Macromolecular Materials and Engineering, 291(6): 697-706.

[12]. Gao, H., Song, Y.M., Wang, Q.W., Han, Z., and Zhang, M.L. (2008). Rheological and mechanical properties of wood fiber-PP/PE blend composites. Journal of Forestry Research, 19(4): 315-318.

[13]. Herrera-Franco, P.J., and Valadez-González, A. (2005). A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering, 36(8): 597-608.

[14]. Xie, Y., Xiao, Z., Grüneberg, T., Militz, H., Hill, C.A., Steuernagel, L., and Mai, C. (2010). Effects of chemical modification of wood particles with glutaraldehyde and 1, 3-dimethylol-4, 5-dihydroxyethyleneurea on properties of the resulting polypropylene composites. Composites. Science and Technology, 70(13): 2003-2011.

[15]. Han, G., Lei, Y., Wu, Q., Kojima, Y., and Suzuki, S. (2008). Bamboo–fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. Journal of Polymers and the Environment,16(2): 123-130.

[16]. Yeh, S.K., and Gupta, R.K. (2010). Nanoclay‐reinforced, polypropylene‐based wood–plastic composites. Polymer Engineering and Science, 50(10): 2013-2020.

[17]. Gu, R., Kokta, B.V., Michalkova, D., Dimzoski, B., Fortelny, I., Slouf, M., and Krulis, Z. (2010). Characteristics of wood–plastic composites reinforced with organo-nanoclays. Journal of Reinforced Plastics and Composites, 29(24): 3566-3586.