[1]. Bischetti, G.B., Chiaradia, E.A., Simonato, T., Speziali, B., Vitali, B., Vullo, P., and Zocco, A. )2005(. Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and Soil, 278: 11-22.
[2]. Waldron, L.J. )1977(. The shear resistance of root-permeated homogeneous and stratified soil. Soil Science Society of America Journal, 41(5): 843-849.
[3]. Waldron, L.J., and Dakessian, S. )1981(. Soil reinforcement by roots: calculation of increased soil shear resistance from root properties. Soil Science, 132: 427-435.
[4]. Greenway, D.R. )1987(. Vegetation and slope stability. In Slope Stability: geotechnical engineering and geomorphology. Editors. Anderson, M.G., and Richards, K.S. John Wiley and Sons Inc, Hoboken, New Jersey. p 187-230.
[5]. Schmidt, K.M., Roering, J.J., Stock, J.D., Dietrich, W.E., Montgomery, D.R., and Schaub, T. )2001(. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal, 38(5): 995-1024.
[6]. Chiatante, D., Schippa, S., Di Iorio, A., and Sarnataro, M. )2003(. The influence of steep slope on root system development. Journal of Plant Growth Regulation, 21: 247-260.
[7]. Dupuy, L., Faurcaud, T., and Stokes, A. )2005(. A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant and Soil, 278: 119-134.
[8]. Di Iorio, A., Lasserre, B., Petrozzi, L., Scippa, G.S., and Chiatante, D. )2008(. Adaptive longitudinal growth of first-order roots of woody species (
Spartium juncerum) to slope and different soil condition-upward growth of surface roots.
Environmental and Experimental Botany, 63: 207-215.
[9]. Wu, T.H., McKinnell, W.P., and Swanston, D.N. )1979(. Strength of tree roots and landslides on Prince of Wales Island. Alaska. Canadian Geotechnical Journal, 16(1): 19-33.
[10]. Stokes, A. )2002(. Biomechanics of tree root anchorage. In: Waisel, Y., Eshel, A., and Kafkafi, U. Editors. Plant roots: The hidden half. New York, Marcel Dekker, Inc. pp 175-186.
[11]. Vergani, C., Chiaradia, E.A., and Bischetti, G.B. )2012(. Variability in the tensile resistance of roots in Alpine forest tree species. Ecological Engineering, 46: 43-56.
[12]. Watson, A.J., and Marden, M. )2004(. Live root-wood tensile strengths of some common New Zealand indigenous and plantation tree species. New Zealand Journal of Forestry Science, 34(3): 344-353.
[13]. Norris, j. )2005(. Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England. In Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability, Springer Netherlands, pp. 61-71.
[14]. Abernethy, B., and Rutherfurd, I.D. )2001(. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrological Process, 15: 63-79.
[15]. Morgan, R.P., and Rickson, R.J. (2003) Slope Stabilization and Erosion Control: A Bioengineering Approach: Taylor and Francis, UK.
[16]. Tosi, M. )2007(. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology, 87: 268-283.
[17]. Abdi, E., Majnounian, B., Rahimi, H., Zobeiri, M., and Habibi Bibalani, G.H. )2010(. Investigation of Biotechnical Properties of Parottia persica in Order to Use in Bioengineering (Case Study: Patom district of Kheyrud Forest). Journal of Natural Environment, Iranian Journal of Natural Resources, 63(1): 53-62.
Journal of Forest and Wood Products, 67(1): 13-19.
[19]. Karrenberg, S., Blaser, S., Kollmann, J., Speck, T., and Edwards, P.J. )2003(. Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Functional Ecology, 17: 170-177.