تأثیر نانوسیلیکا و پلی‌اکریلامید کاتیونی بر ماندگاری، آبگیری، و ویژگی‏های مقاومتی کاغذ بازیافتی از کارتن‏ های کنگره ‏ای کهنه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه فناوری سلولز و کاغذ دانشکدة مهندسی فناوری‏های نوین دانشگاه شهید بهشتی، تهران، ایران

2 کارشناس ارشد گروه فناوری سلولز و کاغذ دانشکدة مهندسی فناوری‏های نوین دانشگاه شهید بهشتی، تهران، ایران

چکیده

کاغذسازان برای ارتقای عملکرد فرآوردة نهایی کاغذی و همچنین بهبود کارآیی فرایند تولید از مواد شیمیایی متنوع استفاده می‏کنند. در حضور میزان ثابت نشاستة کاتیونی، به منزلة عامل مقاومت خشک و تا حدودی کاهندة بار آنیونی اجزای سوسپانسیون کاغذسازی، تأثیر سامانة پلی‌اکریلامید کاتیونی/ نانوسیلیکا بر میزان ماندگاری و آبگیری و ویژگی‏های کاغذ تولیدی از بازیافت کارتن‏های کنگره‏ای کهنه (OCC) و همچنین حجم آبگیری در دستگاه آبگیری دینامیکی[1] (DDJ) ارزیابی شد. نتایج نشان داد در حضور نشاستة کاتیونی کاربرد منفرد پلیمر اکریلامید کاتیونی در مقایسه با سیلیکای آنیونی در همة ویژگی‏های مورد مطالعه کارآمدتر است و موجب ارتقای ویژگی‏های مطالعه‌شده در مقایسه با عدم کاربرد این دو افزودنی می‏شود. با کاربرد سامانة نشاسته/ CPAM[2]/ نانوسیلیکا خروج حجم بالاتر آب (تا 6%) و به عبارتی کاهش مدت زمان لازم برای تشکیل ورقة کاغذی (تا 10%) ‏همراه ماندگاری بیشتر (بیش از 2%) و در نتیجه به هم پیوستن و متراکم‏تر شدن نرمه‏ها و الیاف از طریق پل‏زنی و شبکه‏سازی و همچنین کمک به خنثی‏سازی هر چه بیشتر بار آنیونی سطحی اجزای دوغاب و تشکیل دلمه‏هایی بزرگ‏تر پدید آمد. سازوکارهای متراکم‏ساز یادشده به بهبود احتمالی شکل‏گیری پیوندهای درون‌شبکه‏ای منجر می‌شود که از این رهگذر شاخص کششی را تا بیش از 45 درصد و شاخص ترکیدن را بیش از 50 درصد بهبود می‌بخشد. تأثیر نانوذرات آنیونی سیلیکا بر استحکام دلمه‏های تشکیل‏یافته توسط CPAM به صرف انرژی بیشتر برای پاره ‏کردن کاغذ می‌انجامد و بیش از 12 درصد بر شاخص پارگی می‌افزاید. بنابراین، با استفاده از سامانة پلی‌اکریلامید کاتیونی/ نانوسیلیکا، علاوه بر نرخ تبدیل بالاتر مادة اولیه به محصول و راندمان بالاتر تولید، فرآورده‏ای با ویژگی‏های کاربردی بالاتر و مطلوب‏تر نیز به دست می‏آید.



[1] .Dynamic Drainage Jar


[2] .Cationic Polyacrylamide

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Nano silica and Cationic Polyacrylamide on Retention, Drainage and Strength properties of recycled paper from OCC

نویسندگان [English]

  • Hossein Jalali Torshizi 1
  • Saida Zare Bidok 2
  • Omid Ramezani 1
  • Hamidreza Rudi 1
1 Assistant Professor, Department of Cellulose and Paper Technology, Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, I.R. Iran
2 M.Sc., Department of Cellulose and Paper Technology, Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, I.R. Iran
چکیده [English]

Various kinds of chemicals are used in papermaking to enhance paper properties and to improve efficiency of the production process. In the presence of cationic starch as an anionic charge catcher, effects of Nano silica/cationic Polyacrylamide complex on retention, drainage time, water volume drained by Dynamic Drainage Jar and properties of paper recycled from old corrugated container were investigated. The results revealed that individual addition of CPAM is more efficient than the individual addition of anionic nano silica, regarding to the investigated properties, increase all characteristics compared to the situation without these addition. Higher volume of drained water (up to 6%) and lesser time needed for the sheet formation (up to 10%) combined with retention increment (> 2%) have been achieved by flocculation and consolidation of fines and fibers via bridging and network flocculation of pulp ingredients and contributing to charge neutralization of anionic surfaces, more and more, resulted in bigger flocs which could be retained by papermaking wire. The mentioned mechanism contributed to better bonding of paper network resulted in tensile and burst indicates improvement up to > 45% and >50%, respectively. Influence of silica anionic nanoparticle on strengthening of the flocs formed by CPAM, made higher energy requirements (> 12%) for paper tearing. In addition to higher yield of production, application of CPAM/nano silica complex resulted in a paper with higher value from quality and application point of view.

کلیدواژه‌ها [English]

  • Drainage
  • cationic polyacrylamide
  • nano silica
  • retention
  • strength properties of OCC recycled paper
[1]. Vishtal, A., Rousu, P., Hultholm, T., Turku, K., Paananen, P., and Käyhkö, J. (2011). Drainage and retention enhancement of a wheat straw-containing pulp furnish using microparticle retention aids. BioResources, 6(1), 791-806.
[2]. Hubbe, M. A. (2005). Emerging Technologies in Wet-End Chemistry. Chapter 2: Nanotechnology in the Wet End. PIRA International Ltd, 3-28.
[3]. Cauley, T. A. (2000). The Hydrocol Microparticle System comes to Standard News Production, TAPPI 2000 Papermakers Conf. Trade Fair, 545.
[4]. Main, S. and Simpson, P. (1999). Retention Aids for High Speed Paper Machines. TAPPI Journal, 82(4):78.
[5]. Hubbe, M. A. (2005). Microparticle Programs for Drainage and Retention, in:Micro and Nanoparticles in Papermaking, Rodriguez JM(Ed), TAPPI PRESS, Georgia, Atlanta, 1-33.
[6]. Sang, Y., McQuaid, M., and Englezos, P. (2012). Pre flocculation of precipitated calcium carbonate filler by cationic starch for highly filled mechanical grade paper. Bioresources, 7(1), 354-373.
[7]. Wang, S., Sun, X., You, F., Dai, H., Mao, S., and Wang, J. (2012). Application of cationic modified carboxymethyl starch as a retention and drainage aid in wet end system. Bioresources, 7(3): 3870-3882.
[8]. Asselman, T. and Garnier, G. (2001). The flocculation mechanism of microparticulate retention aid systems", Journal of pulp and paper science, 27(8): 273-278.
[9]. Khosravani, A. and Rahmaninia, M. (2013). The potential of nanosilica – cationic starch wet end system for applying higher filler content in fine paper. Bioresources 8(2): 2234-2245.
[10]. Xu, Q. H., Li, W. G., Cheng, Z. L., Yang, G., and Qin, M. H. (2014). TEMPO/NaBr/ NaClO -mediated surface oxidation of nanocrystalline cellulose and its micro particulate retention system with cationic polyacrylamide. Bioresources, 9(1): 994-1006.
[11]. Allen, L. H. and Lapointe, C. L. (2005). Effectiveness of retention aids for pitch control in TMP newsprint manufacture. Part I: Low shear. Pulp & Paper Canada Journal, 106(12): 102-107.
[12]. Nicu, R., Bobu E., and Desbrieres, J. (2011). Chitosan as cationic polyelectrolyte in wet-end papermaking systems. Cellulose Chemistry and Technology 45 (1-2): 105-111.
[13]. Rahmaninia, M., Mirshokraei, S. A., Ebrahimi, Gh., and Nazhad, M. M. (2011). Effect of cationic starch-nanosilica system on retention and drainage of washed occ pulp. Journal of Forest and Wood Products, 64 (1): 15-22.
[14]. Khosravani, A., Jahan Latibari, A., Tajvidi, M., Mirshokraee, S. A., and Nazhad M. M. (2010). Studying the influence of cationic starch dosage on performance of anionic nanosilica – cationic starch system in fine paper. Journal of Forest and Wood Products, 63 (1): 1-8.
[15]. Wang, L. and Zhang, Y. (2013). Influence of Anionic Trash Catcher Pretreatment on the Effectiveness of Dry Strengthening Agent. Bioresources, 8(4), 6078-6086.
[16]. Zhang, H., Hu, H., He, Z., and Ni, Y. (2009). Highly substituted cationic starch as an anionic trash catcher for high yield pulp containing furnish. TAPPI Journal, July, 31-36.
[17]. Jalali Torshizi, H., Mirshokraie, S. A., Faezipour, M., Hamzeh, Y., and Resalati, H. (2010). Application of galbanum gum (ferula gummosa) polysaccharide as a natural polymer to improve dry strength properties of recycled papers obtained from old corrugated cartons. Iranian Journal of Polymer Science and Technology, 23 (4): 345-353.
[18]. Rudi, H., Ebrahimi, G., Hamzeh, Y., Behrooz, R., and Nazhad, M. M. (2012). The effect of degree of substitution of cationic starch on multi-layer formation of ionic starches in recycled fibers. Iranian Journal of Polymer Science and Technology, 25(1): 11-18.
[19]. Krogerus, B. (2000). Papermaking Chemistry, Chapter 4, Laboratory testing of retention and drainage. Helsinki University of Technology.
[20]. Wagberg, L., Zhao X. P., Fineman I., and Li F. N. (1990). Effects of retention aids on retention and dewatering of wheat straw pulp. TAPPI Journal, 73(4): 177-182.
[21]. Niskanen, K. (2008). Paper Physics, Chapter 2, Fibres and Bonds, Helsinki University of Technology.