عوامل تعیین‏کنندة مدول الاستیسیته و مدول گسیختگی تختة خرده‌چوب بر اساس داده‏های اطلاعات پایه

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار گروه علوم و صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشگاه زابل، زابل، ایران

چکیده

مقدار مدول الاستیسیته و گسیختگی تختة خرده‌چوب بر اساس عوامل تولیدی کنترل می‌شود. حال سؤال اساسی این است که عوامل تعیین‌کنندة خواص خمشی تختة خرده‌چوب کدام‌اند؟ داده‏های پایة این تحقیق شامل 13 متغیر مشترک اندازه‌گیری‌شده با 100 تکرار در منابع علمی معتبر داخلی است. روش‌های مدل‏سازی خطی و مدل‏سازی غیر‌خطی آزمون گاما، ام، و الگوریتم ژنتیک و شبکة عصبی برای آزمون سؤال استفاده شد. عوامل تعیین‌کنندة خواص خمشی تختة خرده‌چوب شاملِ 1. نوع مواد مصرفی، 2. جرم مخصوص خشک مواد اولیه با میانگین‌گیری ساده، 3. جرم مخصوص خشک مواد اولیه با میانگین‌گیری وزنی، 4. مقدار درصد چسب اورة فرمالدئید، 5. جرم مخصوص تختة تولیدی، 6. زمان پرس، 7. دمای پرس، و 8. فشار پرس‌ هستند و به غیر از این عوامل، ضخامت تختة تولیدی برای مدول گسیختگی و نیز درصد اختلاط مواد چوبی و منابع لیگنوسلولزی غیر‌چوبی و مقدار درصد کلرید آمونیوم برای مدول الاستیسیته مهم‌اند. مدل‏های الگوریتم ژنتیک و شبکة عصبی نشان می‏دهد که عوامل تعیین‌کنندة مذکور مخصوصاً جرم مخصوص خشک مواد اولیه با میانگین‌گیری وزنی برای مدول گسیختگی و درصد چسب برای مدول الاستیسیته قابلیت کنترل کیفی تختة خرده‌چوب را دارند و برخی عوامل دیگر را می‏توان ثابت در نظر گرفت. درصد مطلق خطای مدل پیش‌بینی شبکة عصبی برای مدول گسیختگی برابر 644/5 و برای مدول الاستیسیته برابر 91/4 است.

کلیدواژه‌ها


عنوان مقاله [English]

Determinants of Modulus of Rupture and Modulus of Elasticity of Particleboards on the basis of Data base

نویسنده [English]

  • Ali Bayatkashkoli
Associate Professor, Paper and Wood Technology and Sciences Department, Natural Resources Faculty, University of Zabol, Zabol, Iran
چکیده [English]

The MOE and MOR are controlled by production variables of particleboard process. Now, the basic question is which of the particleboard variables is effective on bending strength property? 13 variables of internal scientific resources were measured with 100 repeats. The study steps include the following; liner regression or stepwise, Genetic algorithm, and Artificial Neural Network. The number of effective variables was selected from the output of the stepwise procedure and then modeling of these variables using WinGamma and Mathlab. The number of effective variables in the modulus of elasticity and modulus of rupture are equal to 10 and 9, respectively. As the results of Gamma test shows, effective variables of bending strength are as following: 1. Type of wooden raw material, 2. specific gravity of raw material by simple averaging, 3. specific gravity of raw material by weighted averaging, 4. UF percent, 5. particleboard density, 6,7, and 8. Time, tempreture, and pressure of press. In the other hand, particleboard thickness of MOR and also, percent mixture of wood and non-wood lignocellulosic materials and NH4CL percent for MOE are important. Results of Genetic algorithm and Neural Network were showed that some variables can be kept constant and particleboard properties are controlled by these effective variables, but specific gravity of raw material by weighted averaging for MOR and UF percent of MOE have the strongest effect. Result of BFGS Neural Network has shown that mean absolute percent error of MOR and MOE are equal 5.644% and 4.91%, respectively.

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • Gamma test
  • Genetic Algorithm
  • MOE
  • MOR
  • Particleboard
[1]. Tabarsa, T., Dosthoseini K., and Farsi, M. (2010). Investigation on improving effect of paulownia tomentosa in manufacturing particleboard from eucalyptus cameldolensis. Iranian Journal of Natural Resources, 63(1):23-36.
[2]. Enayati, A.A., Yousefi, H., and Rasouli, D. (2008). Application of Apple pruning on particleboard manufacturing. Iranian Journal of Wood and Paper Science Research, 23(1):63-73.
[3]. Enayati, A.A., Reisi, M., and Edalat. H.R. (2009). Investigation of physical and mechanical properties of particleboard made from Apricot pruning and industrial wood particles. Iranian Journal of Wood and Paper Science Research, 24(2):244-253.
[4]. Enayati, A.A., and Eslah, F. (2012). Effect of great size wood particles on density profile and physical –mechanical properties of particleboards made from poplar. Iranian Journal of Wood and Paper Science Research, 26(4):719-731.
[5]. Kargarfard, A., and Nourbakhsh. A. (2008).  Utilization of grape prunings residues in middle layer of particleboard. Pajouhesh & Sazandegi, 78: 186-191.
[6]. Eslah, F. Aenayati, A.A., Faezipour, M., and Tajvidi, M. (2011). Investigation the effect of increasing board density and amount of UF resin on particleboard properties. Iranian Journal of Wood and Paper Industries, 2(1):103-113.
[7]. Rassam, GH., Rangavar, H., Taghiary, H.R., and Taheri, A. (2011). Study on the possibility of using sunflower stalk in particleboard production. Iranian Journal of Wood and Paper Industries, 2(2):83-97.
[8]. Rangavar, H., Rasam G., and Aghagolpour V. (2011). Investigation on the possibility of using canola stem residues for particleboard manufacturing. Journal of Wood & Forest Science and Technology, 18(1):91-104.
[9]. Kargarfard, A. (2011). The effect of resin gradient and press time on the physical and mechanical properties of particleboard produced from citrus tree wood. Journal of Wood & Forest Science and Technology, 18(2):25-40.
[10]. Reisi, M., Aenayati, A.A., Doost Hoseini K., and Pourtahmasi K. (2012). Evaluation of layering technique effect with poplar and resin content in surface layer and press time on physical and mechanical properties of particleboard. Journal of Wood & Forest Science and Technology, 19(1):135-148.
[11]. Kargarfard, A., and Nourbakhsh. A. (2004).  Utilization of grape prunings residues in particleboard. Iranian Journal of Wood and Paper Industries, 19(2): 159-173.
[12]. Kargarfard, A., Nourbakhsh, A., and Golbabaei, F. (2006). Investigation on utilization of cotton stalk in particleboard production. Iranian Journal of Wood and Paper Science Research, 21(2):95-104.
[13]. Kargarfard, A. (2010). Utilization of corn stalk in particleboard production. Iranian Journal of Wood and Paper Science Research, 25(2):147-156.
[14]. Habibi, M.R., Hosseinkhani, H., and Mahdavi, S. (2012). The potential of mesquite (somr) wood in particleboard production. Iranian Journal of Wood and Paper Science Research, 27(1):51-68.
[15]. Habibi, M.R., Hosseinkhani, H., Mahdavi, S., and Sepidehdam, J. (2011). Effect of wood species on particleboard properties. Iranian Journal of Wood and Paper Science Research, 26(1):58-71.
[16]. Nourbakhsh, A., Kargarfard, A., and Golbabaei, F. (2009). Investigation of physical and mechanical properties of paulownia wood in particleboard Industry. Iranian Journal of Wood and Paper Science Research, 24(1):15-25.
[17]. Kargarfard, A., Doosthosseini, K., and Nourbakhsh, A. (2008). The pridiction of particleboard properties with regression models application in different condition production. Iranian Journal of Wood and Paper Science Research, 23(1):1-11.
[18]. Arabi, M., Faezipour, M., Layeghi, M., and Aenayati, A.k. (2011). Prediction mechanical properties of particleboard and analysis the interaction effect of slenderness ratio and resin content, using linear, quadratic and exponential equation. Iranian Journal of Wood and Paper Science Research, 26(3):511-522.
[19]. Amere, M., Adebe, M.A., and Purmosa, S. (2009).  Determine of factors affecting on the quality of printed paper packaging optimization using experimental design. Journal of Forest and Wood Products (Natural Resources of Iran), 62(1): 11-20.
[20]. Moradian, M.H., Ebraheme, G., Resalate, H., and Durado, A. (2008). Evaluation of statistical models for predicting the burst strength and tear paper in Mazandaran Wood and Paper factory. Journal of Iran Natural Resources, 61(1): 733-749.
[21]. Hatam A., Pourtahmasi K., Resalati H., and Lohrasebi A.H. (2008). Modeling hydrogen peroxide bleaching to predict optical properties of bleached hardwood CMP. Wood Science and Technology, 42:353–367.
[22]. Esteban, L.G., Fernandez, F.G., de Palacios, P., and Conde, M. (2009). Artificial neural networks in variable process control: application in particleboard manufacture. Investigacion Agraria: Sistemas y Recursos Forestales, 18(1), 92-100.
[23]. Fernandez, F.G., Esteban, L.G., de Palacios, P., Navarro, N., and Conde, M. (2008). Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model. Investigacion Agraria: Sistemas y Recursos Forestales, 17(2), 178-187.
[24]. Yapici, F., and Ulucan, D. (2012).  Prediction of modulus of rupture and modulus of elasticity of heat treated Anatolian chestnut (Castanea Sativa) wood by Fuzzy Logic Classifier. Drvna Industrija, 63 (1) 37-43.
 [25]. Andre, N., Cho, H.W., Baek, S.H., Jeong, M.K., and Young, T.M. (2008). Prediction of internal bond strength in a medium density fiberboard process using multivariate statistical methods and variable selection. Wood Science and Technology, DOI 10.1007/s00226-008-0204-7.
[26]. Ozcifci, A., Yapici, F., and Altun, S. (2009). The prediction of effect of grain angle over modulus of rupture and modulus of elasticity values on Scotch pine with Fuzzy logic classifier. 5th International Advanced Technologies Symposium (IATS’09), May 13-15, University of Karabuk, Turkey, pp.1-5.  
[27]. Ismail, F.Sh., and Abu Bakar, N. (2012). Predicting fiberboard physical properties using multilayer perceptron neural network. International Journal of Scientific & Engineering Research, (3) 8: 1-4.
[28]. Bayatkashkoli, A. (2013). Evaluation of process variables effect on the bursting strength of newsprint, printing and writing paper. Journal of the Indian Academy of Wood Science, 10(1):55–61.  
[29]. Yapici, F., Ozcifci, A., Akbulut, T., and Bayir, R. (2009). Determination of modulus of rupture and modulus of elasticity on flake board with fuzzy logic classifier. Materials & Design, (30)6, 2269–2273.
[30]. Cook, D., and Chiu, C.C. (1997). Predicting the internal bond strength of particleboard, utilizing a radial basis function neural network. Engineering Applications of Artificial Intelligence, (10)2, 171–177.
[31]. Kumar A., and Hand V.C. (2000). Feasibility of using neural networks and genetic algorithms to predict and optimize coated paper and board brightness. Industrial Engineering Chemistry Research, 39: 4956-4962.
[32]. Stefansson, A., Koncar, N., and Jones, A.J. (1997). A note on the Gamma test. Neural Computing & Applications, 5:131-133.
[33]. Ennett, C., Frize, M., and Walker, C. (2001). Influence of missing values on artificial neural network performance. Medinfo, 10: 449-503.