[1]. Habibi, Y., Lucia, L.A., and Rojas, O.J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemistry Review, 110: 3479–3500.
[2]. Siró, I., and Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17: 459-494.
[3]. Abdul Khalil, H., Bhat, A., and Ireana Yusra A. (2102). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87: 963-979.
[4]. Tserki, V., Zafeiropoulos, N., Simon, F., and Panayiotou, C A. (2005). Study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing, 36: 1110-1118.
[5]. Li, X., Tabil, LG., and Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment, 15: 25-33.
[6]. Stenstad, P., Andresen, M., Tanem, BS., and Stenius, P. (2008). Chemical surface modifications of microfibrillated cellulose. Cellulose, 15: 35-45.
[7]. Zimmermann, T., Bordeanu, N., and Strub, E. (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 79: 1086-1093.
[8]. Özgür Seydibeyoğlu, M., and Oksman, K. (2008). Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Science and Technology, 68: 908-914.
[9]. Jonoobi, M., Harun, J., Mathew, AP., and Oksman, K. (2010). Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology, 70: 1742-1747.
[10]. Bismarck, A., Aranberri Askargorta, I., Springer, J., Lampke, T., and Wielage, B., Stamboulis, A., Shenderovich, I., and Limbach, H.H. (2002). Surface characterization of flax., hemp and cellulose fibers; surface properties and the water uptake behavior. Polymer Composites, 23: 872-894.
[11]. Hu, W., Chen, S., Xu, Q., and Wang, H. (2011). Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydrate Polymers, 83: 1575-1581.
[12]. Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Ifuku, S., and Yano, H. (2006). Property enhancement of optically transparent bionanofiber composites by acetylation. Applied Physics Letters, 89: 233123.
[13]. Jonoobi, M., Harun, J., Shakeri, A., Misra, M., and Oksman K. (2009). Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources, 4(2) : 626-639.
[14]. Bulota, M., Kreitsmann, K., Hughes, M., and Paltakari, J. (2012). Acetylated microfibrillated cellulose as a toughening agent in poly (lactic acid). Journal of Applied Polymer Science, 126: E449-E458.
[15]. Luo, J., and Sun, Y. (2006). Acetylation of cellulose using recyclable polymeric catalysts. Journal of Applied Polymer Science, 100: 3288-3296.
[16]. Segal, L., Creely, J., Martin, A., and Conrad, C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29: 786-794.
[17]. Holzwarth, U., and Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9):534-534.
[18]. Jonoobi, M., Harun, J., Mathew, AP., Hussein, MZB., and Oksman, K. (2010). Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17: 299-307.
[19]. Cetin, NS., Tingaut, P., Özmen, N., Henry ,N., Harper, D., Dadmun, M., and Sebe, G. (2009). Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromolecular Bioscience, 9: 997-1003.
[20]. Adebajo, MO., and Frost, RL. (2004). Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60: 449-453.
[21]. Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., and Yano, H. (2007). Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules, 8(6): 1973-1978.
[22]. Hu, W., Chen, S., Xu, Q., and Wang, H. (2011). Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydrate Polymers, 83: 1575-1581.
[23]. Kim, D-Y., Nishiyama, Y., and Kuga, S. (2002). Surface acetylation of bacterial cellulose. Cellulose, 9: 361-367.
[24]. Tingaut, P., Zimmermann, T., and Lopez-Suevos F. (2009). Synthesis and characterization of bionanocomposites with tunable properties from poly (lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules, 11: 454-464.
[25]. Yang, Z., Xu, S., Ma, X., and Wang, S. (2008). Characterization and acetylation behavior of bamboo pulp. Wood Science and Technology, 42: 621-632.
[26]. Nada, A-A., Kamel, S., and El-Sakhawy, M. (2000). Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polymer Degradation and Stability, 70: 347-355.
[27]. Lin, N., Huang, J., Chang, P.R., Feng, J., and Yu, J. (2011). Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydrate Polymers, 83, 4(1): 1834–1842.
[28]. Tingaut, Ph., Eyholzer, Ch., and Zimmermann, T. (2011). Functional Polymer Nanocomposite Materials from Microfibrillated Cellulose, Advances in Nanocomposite Technology, Hashim A. (Ed.), 2011, DOI: 10.5772/20817.
[29]. Zhang, W., Zhang, X., Liang, M., and Lu, C. (2008). Mechanochemical preparation of surface-acetylated cellulose powder to enhance mechanical properties of cellulose-filler-reinforced NR vulcanizates. Composites Science and Technology, 68: 2479-2484.