تأثیر گرد و غبار سیمان بر برخی ویژگی‌های شیمیایی خاک تودة گبر-رمس در مجاورت کارخانة سیمان (مطالعة موردی: بندر خمیر، هرمزگان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه احیاء مناطق خشک و کوهستانی، دانشکدة منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 بخش تحقیقات منابع طبیعی، مرکز تحقیقات کشاورزی و منابع طبیعی استان هرمزگان، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرعباس، ایران.

3 گروه مهندسی منابع طبیعی، دانشکدة کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران.

10.22059/jfwp.2024.380773.1306

چکیده

هدف از این پژوهش، بررسی اثرات انتشار گرد و غبار سیمان بر ویژگی‎های شیمیایی خاک تودة گبر-رمس در فواصل مختلف از کارخانة سیمان بود. بدین‌منظور در فصل بهار، سه ترانسکت 2000 متری با فواصل 50 متر از یکدیگر در عرصه پیاده شد و در فواصل 0، 500، 1500 و 2000 متری از کارخانة سیمان در پلات‎هایی با ابعاد 10×10 متر مربعی نمونة خاک از عمق 30-0 سانتی‎متری، از زیر تاج گونة درختی گبر (Hayne (Forssk.) Acacia tortilis) و گونة مرتعی رمس (Moq.) Iljin)Hammada salicornica ) در بندر خمیر واقع در استان هرمزگان برداشت و پس از تجزیة شیمیایی، با استفاده از آنالیز واریانس دوطرفه در سطح 5 درصد آنالیز شدند. بیشترین میزان هدایت الکتریکی در تیمار صفر (6/53 میلی‎موس بر سانتی‎متر) مشاهده شد. درصد کربن آلی، نیتروژن کل، فسفر و گوگرد قابل جذب و ظرفیت تبادل کاتیونی در فاصلة صفر با مقادیر به‎ترتیب 0/37 درصد، 0/02 درصد ، 9/63 و 22/45 میلی‎گرم در لیتر و 11/85 سانتی‎مول بار بر کیلوگرم به‎طورمعنی‎داری کمتر از سایر تیمارها بود (0.05>P). مقدار گوگرد و ظرفیت تبادل کاتیونی، در گونة گبر (22/94میلی‌گرم در لیتر و 13/42سانتی‎مول بار بر کیلوگرم) و در گونة رمس (23/65میلی‌گرم در لیتر و 11/71سانتی‎مول بار بر کیلوگرم) بود. اثرات متقابل فاصله × گونه نشان داد مقادیر کربن آلی و نیتروژن در فواصل مختلف برای هر گونه متفاوت است، به‌طوری‌که در فواصل طولانی‎تر، گونه‌ها کربن آلی و نیتروژن بیشتری نسبت به فاصله‎های نزدیک‎تر دارند (0.05>P).

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The impact of cement dust on some chemical properties of Acacia tortilis-Hammada salicornica soil stands near a cement factory (Case Study: Bandar-e- Khamir, Hormozgan)

نویسندگان [English]

  • Mohammad Pichand 1
  • Mohammad Jafari 1
  • Ali Tavili 1
  • Maryam Moslehi 2
  • Marzieh Rezai 3
1 Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
2 Research Division of Natural Resources, Hormozgan Agricultural and Natural Resources Research and Education Center, AREEO, Bandar Abbas, Iran.
3 Natural Resources Engineering Group, Agriculture and Natural Resources College, University of Hormozgan, Bandarabass, Iran.
چکیده [English]

The aim of this research was to examine the effects of cement dust emissions on the chemical properties of soil in Acacia tortilis-Hammada salicornica stands located 0 to 2-kilometers away from a cement factory. To this end, during the plant growing season, three 2000-meter transects with 50-meter intervals were established, and soil samples were collected at distances of 0, 500, 1500, and 2000 meters from the cement factory. The samples, taken from a depth of 0-30 cm (in plots measuring 10×10 m²) under the canopy of the tree species Acacia tortilis (Forssk.) Hayne and the rangeland species Hammada salicornica (Moq.) Iljin in Bandar-e-Khamir, Hormozgan province, were transported to the laboratory for chemical analysis and analyzed using two-way ANOVA at the 95% confidence level. The highest electrical conductivity was observed at the zero-distance treatment (6.53 mS/cm). The percentages of organic carbon, total nitrogen, available phosphorus, available sulfur, and cation exchange capacity at the zero distance, with values of 0.37%, 0.02%, 9.63 mg/L, 22.45 mg/L, and 11.85 cmolc/kg, were significantly lower than those at other distances (P<0.05). The sulfur content and cation exchange capacity were 22.94 mg/L and 13.42 cmolc/kg for A. tortilis, and 23.65 mg/L and 11.71 cmolc/kg for H. salicornica (P<0.05). The distance × species interaction showed that organic carbon and nitrogen varied at different distances for each species, such that at greater distances, the species had higher levels of organic carbon and nitrogen compared to locations closer to the cement factory (P<0.05).

کلیدواژه‌ها [English]

  • Cement plant dust
  • Crown
  • Forb and tree species
  • Hormozgan
  • Soil characteristics
  • Estifanos, S. (2014). Investigating the distribution of selected major and trace metals in lithogenic environment near cement factory, Mekelle, Ethiopia. Journal of Environmental Protection, 5(2), 144-155.
  • Gheorghe, I.F., & Ion, B. (2011). The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources, 29, 241-280.
  • Jain, R., & Jain, P.L. (2006). Pollution of soil due to cement factory near Narsingarh, Madhya Pradesh (India). Journal of Environmental Research and Development, 1(2), 151-4.
  • Anurag, K.R., & Sahu, N. (2021). Impact of cement industries dust on soil properties in Bhatapara, Chhattisgarh. Annals of Plant and Soil Research, 23(2), 209-214.
  • Yitagesu, Y.H. (2024). Pollution effect and effluent discharge on soil physico-chemical properties around cement factories. Journal of Medical Research and Health Sciences, 7(5), 3107-3114.
  • Ismail, Z., Ali, S., Zulfiqar, A., & El-Serehy, H.A. (2023). Impact of cement industries on potentially toxic elements’ contamination and other characteristics of topsoil: A case study. Environmental Pollutants and Bioavailability, 35(1), 2271664.
  • Igomu, E.A., Odoemena, S.O., & Odeh, I.M. (2023). Effects of cement dust emitted by Dangote cement factory on some chemical properties of soils of Тse-Kucha, Benue State, Nigeria. Bulgarian Journal of Soil Science, 8(2), 119-125.
  • Ashraf, M., Bhat, G.A., & Ashraf, N. (2022). Impact of cement dust on soil physico-chemical characteristics around khrew cement factory in district Pulwama. Journal of Himalayan Ecology and Sustainable Development, 17, 1-16.
  • Adebiyi, A.P., Adigun, H.O., Lawal, K.J., Salami, K.D., Adekunle, V.A.L., & Oyelakin, J.A. (2021). Impact of cement dust on physical and chemical nutrients properties of forest topsoil. Journal of Applied Sciences and Environmental Management, 25(5), 695-700.
  • Lamare, R.E., & Singh, O.P. (2020). Effect of cement dust on soil physico-chemical properties around cement plants in Jaintia Hills, Meghalaya. Environmental Engineering Research, 25(3), 409-417.
  • Agbede, O.T., Taiwo, A.M., Adeofun, C.O., Adetunji, M.T., Azeez, J.O., & Arowolo, T.A. (2022). Assessing the pollution effect of cement dust emission on the soil quality around Ewekoro cement factory, southwestern Nigeria. Environmental Forensics, pp. 1-11.
  • Mclean, E. (1982). Soil pH and lime requirement, methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, WI. pp. 199-224.
  • Carter, M.R. & Gregorich, E.G. (2007). Soil sampling and methods of analysis. CRC press. 1240 p.
  • Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
  • Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen—total. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 595-624.
  • Tabatabai, M.A., & Bremner, J.M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301-307.
  • Sparks D.L. Page A.L. Helmke P.A. Leoppert R.H. Soltanpour P.N. Tabatabai M.A. Johnston G.T. & Summer M.E. (1996). In: Bartels J. M. (Eds.), Methods of soil analysis. Soil science society of America, Madison, Wisconsin USA
  • Rowell, D.L. (1994). Measurement of the composition of soil solution. Soil science methods and Application, Part7. 146 p.
  • Olsen, S.R., & Sommers, L.E. (1982). In: A.L. Page R.H. Miller and D.R. Keeney (Eds.), Methods of soil analysis. Part 2: chemical and microbiological properties. (2nded.). American Society of Agronomy and Soil science society of america, Madison, Wisconsin, Phosphorus. Pp. 403-430
  • Jafari, M., Tavili, A., Ghadimi, H., Ebrahimi, D.K., Janat, R.M., & Kouhpeima, A. (2011). Investigation on the effects of haloxylon-planted different age’s levels on physical and chemical properties of soil in ardestan area. Watershed Management Research, 4 (89), 37-43. (in Persian)
  • Kahi, H.C., Ngugi, R.K., Mureithi, S.M., & Ng'ethe, J.C. (2009). The canopy effects of Prosopis juliflora (dc.) and Acacia tortilis (hayne) trees on herbaceous plants species and soil physico-chemical properties in Njemps flats, Kenya. Tropical and Subtropical Agroecosystems, 10(3), 441-449.
  • Ibanga, I. J., Umoh, N. B., & Iren, O. B. (2008). Effects of cement dust on soil chemical properties in the Calabar Environment, Southeastern Nigeria. Communications in Soil Science and Plant Analysis, 39(3-4), 551-558.
  • Khamparia, A., Chattergee, S.K., & Sharma, G.D. (2012). Assessment on effect of cement dust pollution on soil health. Journal of Environmental Research and Development, 7(1), 368-374.
  • Magray, R.A. (2016). Studies on the Impact of Cement Dust Pollution on Selected Vegetable Crops (Doctoral dissertation).
  • Affinnih, K.O., Salawu, I.S., & Isah, A.S. (2014). Methods of available potassium assessment in selected soils of Kwara State, Nigeria. Agrosearch, 14(1), 76-87.
  • A Kokatnur, S., & Saviramath, V.B. (2019). Impact of cement dust on physico-chemical properties of soils around a cement factory in Bagalkot, Karnataka, India. Journal of Geography, Environment and Earth Science International, 20(2), 1-12.
  • Li, W., Lv, G., & Hu, D. (2022). Soil microbial-mediated sulfur cycle and ecological network under typical desert halophyte shrubs. Land Degradation and Development, 33(18), 3718-3730.