[1] Dehghani Firoozabadi, M.R., & Kolaei Moakhar, F. (2019). Investigation and comparison of mechanical and barrier properties of stone paper and glossy paper. Journal of Wood and Paper Industries of Iran, 10(3), 373-384. (In Persian)
[2] Roohani,M., Movahedi, F., Kord, B., & Khakifirooz, A. (2023). Investigation on coating of paper with biodegradable polymers and Zinc Oxide nanoparticles on its mechanical and barrier properties. Journal of Wood and Paper Industries of Iran, 14(1), 97-111.
[3] Armand, K., & Ghasemiyan, A. (2020). Effect of coating of packaging paper using chitosan and modified polylactic acid. Iranian Journal of Wood and Paper Science Research, 35(4), 321-331. (In Persian)
[4] El-Sakhawy, M., & Hassan, M.L. (2007). Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers, 67(1), 1-10.
[5] Li, H., Qi, Y., Zhao, Y., Chi, J., & Cheng, S. (2019). Starch and its derivatives for paper coatings: A review. Prog. Org. Coatings, 135(2), 213-227.
[6] Basak, S., Dangate, M.S. & Samy, S. (2024). Oil-and water-resistant paper coatings: A review. Progress in Organic Coatings, 186(3), 107938.
[7] Xia, Y., Wang, S., Meng, F., Xu, Z., Fang, Q., Gu, Z., Zhang, C., Li, P., & Kong, F. (2024). Eco-friendly food packaging based on paper coated with a bio-based antibacterial coating composed of carbamate starch, calcium lignosulfonate, cellulose nanofibrils, and silver nanoparticles. International Journal of Biological Macromolecules, 254(3), 127659.
[8] Panahirad, S., Dadpour, M., Peighambardoust, S.H., Soltanzadeh, M., Gullón, B., Alirezalu, K., & Lorenzo, J.M. (2021). Applications of carboxymethyl cellulose-and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science & Technology, 110(4), 663- 673.
[9] Shimizu, M., Saito, T., & Isogai, A. (2016). Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. Journal of Membrane Science (J. Memb. Sci), 550(51), 1-7.
[10] Barbash, V., & Yaschenko, O. (2020). Preparation, properties and use of nanocellulose from non-wood plant materials. Novel nanomaterials, DOI: 10.5772/intechopen.94272
[11] Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., & Hussin, M.H. (2020). Nanocellulose: from fundamentals to advanced applications. Cellulose, 8(1), 392.
[12] Isogai, A. (2021). Emerging nanocellulose technologies: recent developments. Advanced Materials, 33: 2000630.
[13] Perumal, S., Lee, H., & Jeon, S.(2021). Synthetization of hybrid nanocellulose aerogels for the removal of heavy metal ions. Journal of Polymer Research, 28 (8), 325.
[14] Curvello, R., Singh, Vikram., & Gil, R. (2019). GarnierEngineering nanocellulose hydrogels for biomedical applications. Advances in Colloid and Interface Science, 267(1), 47-61
[15] Mikkonen, K.S., Schmidt, J., Vesterinen, A.-H., & Tenkanen, M. (2013). Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films. Journal of Materials Science, 48(12), 4205-4213.
[16] Chen, X., Ren, J ., & Meng, L. (2015). Influence of ammonium zirconium carbonate on properties of poly (vinyl alcohol)/xylan composite films. Journal of Nanomaterials, 2015(1), 1-8.
[17] Queirós, L.C.C., Sousa, S.C.L., Duarte, A.F.S., Domingues, F.C., & Ramos, A.M.M. (2017). Development of carboxymethyl xylan films with functional properties. Journal of Food Science and Technology, 54(1), 9-17.
[18] Ni, S., Wang, B., Zhang, H., Zhang, Y., Liu, Zh., Wu, W., Xiao, H., & Dai, H., (2019). Glyoxal improved functionalization of starch with AZC enhances the hydrophobicity, strength and UV blocking capacities of co-crosslinked polymer. European Polymer Journal, 110(1), 385-393
[19] Liu, M., Zhou, Y., Zhang, Y., Yu, C., & Cao, S. (2014). Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol, International Journal of Biological Macromolecules, 70(2), 340-346.
[20] Harussani, M.M., Sapuan, S.M., Firdaus, A.H.M., El-Badry, Y.A., Hussein, E.E., & El-Bahy, Z.M. (2021). Determination of the tensile properties and biodegradability of cornstarch-based biopolymers plasticized with sorbitol and glycerol. Polymers (Basel), 13(21), 3709.
[21] Yadav, R.B. (2024). Biodegradable Packaging: Recent Advances and Applications in Food Industry, Food Process Enginnering and Technology: Safety, Packaging, Nanotechnologies Human Health, pp. 189-213.
[22] Shuzhen, N., Liang, J., Hui, Z., Yongchao, Z., Guigan, F., Huining, X., & Hongqi, D. (2018). Enhancing hydrophobicity, strength and UV shielding capacity of starch film via novel co-cross-linking in neutral conditions. Royal Society Open Science, 5(11), 181206.
[23] ISO 15105-1:2007, Plastics - Film and sheeting - Determination of gas-transmission rate - Part 1: Differential-pressure methods.
[24] ISO 2528:2017, Sheet materials - Determination of water vapour transmission rate (WVTR) - Gravimetric (dish) method.
[25] TAPPI T 460, Air resistance of paper (Gurley method).
[26] ASTM D882-18, Standard Test Method for Tensile Properties of Thin Plastic Sheeting.
[27] Li, F., Biagioni, P., Bollani, M., Maccagnan, A., & Piergiovanni, L. (2013). Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose, 20(5), 2491-2504.
[28] Herrera, M. A., Sirviö, J. A., Mathew, A. P., & Oksman, K. (2016). Environmental friendly and sustainable gas barrier on porous materials: Nanocellulose coatings prepared using spin-and dip-coating. Materials & Design, 93(5), 19-25.
[29] Amini, E., Azadfallah, M., Layeghi, M., & Talaei-Hassanloui, R. (2016). Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose, 23(1), 1-14.
[30] Aulin, C., Gällstedt, M., & Lindström, T. (2010). Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose, 17(3), 559-574.
[31] Song, D. (2011). Starch crosslinking for cellulose fiber modification and starch nanoparticle formation. Doctor of Philosophy in the School of Chemical and Biomolecular Engineering Georgia Institute of Technology.
[32] Wang, S., Zhang, F., Chen, F., & Pang, Z. (2013). Preparation of a crosslinking cassava starch adhesive and its application in coating paper. BioResources, 8(3), 3574-3589.
[33] de Castro, E.D.S., & Cassella, R.J. (2016). Direct determination of sorbitol and sodium glutamate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) in the thermostabilizer employed in the production of yellow-fever vaccine. Talanta, 152(1), 33-38.