مقایسة کارآیی رگرسیون‌های گاوسی و خطی در برآورد زی‌توده با استفاده از تصاویر ماهوارة سنتینل-2 (مطالعة موردی: جنگل خیرود)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه جنگلداری و اقتصاد جنگل، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران.

10.22059/jfwp.2024.372352.1284

چکیده

هدف از پژوهش حاضر بررسی کارایی و مقایسة عملکرد روش ­های ناپارامتری رگرسیون گاوسی و پارامتری رگرسیون حداقل مربعات خطی در برآورد زی­ تودة روی­زمینی در یک جنگل ناهمگن کوهستانی با استفاده از داده ­های ماهواره سنتینل-2 است. به‌منظور مدل­ سازی و اعتبارسنجی زی­تودة روی­زمینی، تعداد 102 قطعه ­نمونة مربعی شکل با ابعاد 45×45 متر به روش انتخابی در توده ­های خالص راش و ممرز در جنگل خیرود برداشت شدند. حجم سرپای درختان و میزان زی ­توده با استفاده از جدول تاریف و چگالی متوسط چوبی برای هرگونه برآورد شد. تصحیح اتمسفری بر روی تصویر سنتینل-2 انجام شد. باندهای اصلی به‌همراه باندهای حاصل از شاخص ­های پوشش گیاهی، تبدیل تسلدکپ و تجزیة مؤلفه ­های اصلی برای تجزیه و تحلیل­ همبستگی و مدل­سازی استفاده شدند. 70 درصد قطعه ­نمونه ­ها براساس سه مجموعه داده شامل باندهای اصلی، شاخص ­های پوشش گیاهی و مجموعه باندهای اصلی با شاخص ­های پوشش گیاهی برای مدل­ سازی و 30 درصد باقیمانده برای اعتبارسنجی مدل­ ها استفاده شدند. نتایج اعتبارسنجی­ مدل ­­ها براساس آماره ­های ضریب تعیین (R2) و درصد میانگین مجذور مربعات خطا (RRMSE) نشان داد، رگرسیون گاوسی در مدل­سازی زی ­توده و باندهای اصلی با (0/56=R2 و 21/14=RRMSE)، بهترین نتایج را به‌دست آورده است. همچنین مدل­ سازی زی­توده و باندهای اصلی برای رگرسیون حداقل مربعات خطی با (0/43=R2 و 23/32=RRMSE) به‌دست آمد. در هر دو روش استفاده همزمان از شاخص ­های پوشش گیاهی و باندهای اصلی باعث بهبود نتایج مدل­ سازی نشد. نتایج این پژوهش نشان داد که رویکرد استفاده از روش رگرسیون گاوسی و تصاویر سنتینل-2 می­تواند منجر به بهبود قابل توجه برآورد زی ­تودة روی­ زمین جنگل شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Gaussian process regression and least squares linear regression to estimate above-ground biomass using Sentinel-2 data (Case study: Kheyrud Forest)

نویسندگان [English]

  • Behnoosh Sotoodeh
  • Parviz Fatehi
  • Manochehr Namiranian
  • Fardin Moradi
Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

The aim of this research was to investigate the performance of the non-parametric Gaussian process regression (GPR) and the parametric linear least squares regression (LMSR) in estimating above-ground biomass (AGB) in a heterogeneous mountain forest using Sentinel-2 data. To model and validate the above-ground biomass, 102 square-shaped sample plots with dimensions of 45 × 45 meters were collected using a selective method in pure Fagus orientalis and Carpinus betulus L. stands in the Kheyrud forest. Tree volume, and subsequently AGB were estimated using a local volume table and average wood density for each species. Atmospheric correction was applied to the Sentinel-2 image. The main spectral bands, vegetation indices, Tasseled Cap transformation, and principal component analysis veriables were used to model AGB. Seventy percent of the field sample plots were used for modeling with three datasets (main spectral bands, vegetation indices, and the combination of main bands and vegetation indices). To validate the models thirty percent of field sample plots were used. Based on the coefficient of determination and relative root mean squared error (RRMSE), the GPR achieved the best result, with R² = 0.56 and RRMSE = 21.14%. The results of above-ground biomass modeling using the main bands for LMSR produced an R² = 0.43 and RRMSE = 23.32%. A combination of vegetation indices (VIs) and main spectral bands did not improve the model accuracy for both GPR and LMSR. Overall, our results indicated that combining GPR with Sentinel-2 data reasonably improved forest AGB estimation.

کلیدواژه‌ها [English]

  • Estimation Forest aboveground biomass
  • Gaussian Process regression
  • Hyrcanian forests
  • Least squares linear regression
  • Sentinel-2
  • Kumar, L., & Mutanga, O. (2017). Remote sensing of above-ground biomass. Remote Sensing, 9(9), 1–8.
  • Marvie Mojadjer, M.R. (2011). Silviculture. University of Tehran Press, Tehran. 410 p. (In Persian)
  • Brown S. (1997). Estimating biomass and biomass change of tropical forests: a Primer. FAO Forestry Paper, 134, 13-33.
  • Tian, L., Wu, X., Tao, Y., Li, M., Qian, C., Liao, L., & Fu, W. (2023). Review of Remote Sensing-Based Methods for Forest Aboveground Biomass Estimation: Progress, Challenges, and Prospects. Forests Journal, 14(6), 1-31.
  • Mateos, E. (2019). Study on the Potential of Forest Biomass Residues for Bio-Energy. Proceedings Journal, 2(23), 1420.
  • Kabiri Koupaei, K., Marvie Mohadjer, M.R., Zahedi Amiri, Gh., Namiranian, M., & Etemad, V. (2009). A comparison on the quantitative and qualitative morphological characteristics of beech (Fagus orientalis Lipsky) in a pure and mixed stand (Gorazbon district, North of Iran). Iranian Journal of Forest and Poplar Research, 17(3), 422-435 (In Persian).
  • Azizi, Z., Hosseini, A., & Iranmanesh, Y. (2018). Estimating Biomass of Single Oak Trees Using Terrestrial Photogrammetry. Journal of Environmental Science and Technology, 75(19), 81-93.
  • Ronoud, Gh., Darvishseft, AA., & Namiranian, M., (2018). Estimation of aboveground woody biomass of Fagus orientalis stand in Hircanian forest of Iran using OLI data (Case study: Gorazbon and Namkhaneh Districts, kheyrud Forest). Journal of Forest and Wood Products (Iranian Journal of Natural Resources), 70(4), 559-568. (In Persian)
  • Fatehi, P., Damm, A., Schaepman, M. E., & Kneubühler, M. (2015). Estimation of alpine forest structural variables from imaging spectrometer data. Remote Sensing, 7(12), 16315-16338.
  • Sinha, S. K., Padalia, H., Dasgupta, A., Verrelst, J., & Rivera, J.P. (2020). Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical deciduous forest plantation, North India. International Journal of Applied Earth Observation and Geoinformation, 86,102027.
  • Aronoff, S., Darvishseft, A. A., Pir Bavaghar, M., Rajabpoor Rahmati, M. (2012) Remote sensing for GIS managers, University of Tehran Press, Tehran. 720 p. (In Persian)
  • Pir Bavaghar, M. (2011). “Evaluation of capability of IRS-P6 satellite data for predicting quantitative attributes of forests (case study: Northern Zagros forests). Iranian Journal of Forest, 3(4), 277-289.
  • Moradi, F., Darvishsefat, A., Namiranian, M., & Ronoud, Gh. (2018). Investigating the capability of Landsat 8 OLI data for estimation of aboveground woody biomass of common hornbeam (Carpinus betulus L.) stand in Khyroud Forest. Iranian Journal of Forest and Poplar Research, 26(3), 406-420. (In Persian)
  • Vafaei, S., Soosani, J., Adeli, K., Fadaei, H. and Naghavi, H., (2017). Estimation of aboveground biomass using optical and radar images (Case study: Nav-e Asalem forests, Gilan). Iranian Journal of Forest and Poplar Research, 25(2), 320-331.
  • Ghanbari Motlagh, M., & Babaie Kafaky, S. (2019). Estimation of Forest Above Ground Biomass in Hyrcanian Forests Using Satellite Imagery. Environmental Science and Technology, 22(5), 1-13.
  • Fazelian, M., Attarchi, S., Etemad, V., & Lisenberg, V. (2019). Forest biomass estimation using optical and microwave imagery (Case study: Garazbon Series, Kheirud Forest). Iranian Journal of Forest, 12(3), 391-405.
  • Su, H., Shen, W., Wang, J., Ali, A., & Li, M. (2020). Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. In Forest Ecosystems, 7(64), 1-20.
  • Zhao, P., Lu, D., Wang, G., Liu, L., Li, D., Zhu, J., & Yu, S. (2016). Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. International Journal of Applied Earth Observation and Geoinformation, 53, 1-15.
  • Ghosh, S. M., & Behera, M.D. (2018). Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography, 96, 29-40.
  • Mauya, E. W., & Madundo, S. (2021). Modelling and Mapping Above-Ground Biomass Using Sentinel 2 and Planet Scope Remotely Sensed Data in West Usambara Tropical Rainforests, Tanzania, Research Square Journal, 3(1), 1-32.
  • Bayat, M., Namiranian, M., Zobeiri, M,. & Fathi, J. (2013). Determining growth increment and density of tree in forest using premanent sample plot (Case study: Gorazbon district of Kheyrud Forest), Iranian Journal of Forest and Poplar Research, 21(3), 424-438.
  • (1997). Estimating Biomass and Biomass Change of Tropical Forests: A Primer, FAO Forestry, 134 p.
  • Enayati, A.A., 2011. Wood Physics. University of Tehran Press, Tehran, 265p (In Persian).
  • Bihamta, M., & Chahooki, MA. (2015) Principles of statistics in natural resource sciences, University of Tehran Press, Tehran. 320 p. (In Persian)
  • Verrelst, J., Camps-Valls, G., Mu˜noz-Marí, J., Rivera, J.P., Veroustraete, F., Clevers, J.G.P.W., Moreno, J., 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review. ISPRS Journal of Photogrammetry and Remote sensing, 108, 273-290.
  • Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.P., Lewis, P., North, P., & Moreno, J. (2019). Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv Geophys, 40, 589-629.
  • Upreti, D., Huang, W., Kong, W., Pascucci, S., Pignatti, S., Zhou, X., Ye, H., & Casa, R. (2019). A comparison of hybrid machine learning algorithms for the retrieval of wheat biophysical variables from sentinel-2. Remote Sensing, 11(5), 481.
  • Fatehi, P., Damm, A., Schweiger, A. K., Schaepman, M.E., & Kneubühler, M. (2015). Mapping Alpine Aboveground Biomass from Imaging Spectrometer Data: A Comparison of Two Approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 3123-3139.
  • Saedmocheshi, A., Pirbavaghar, M., Shabanian, N., & Fatehi, P. (2019). The possibility of estimating species diversity using Sentinel satellite optical images (Case study: Marivan forests). Forest and wood products. Iranian Natural Resources Journal 72(2), 101-110. (In Persian)