[1] Azizi Samir, M.A.S., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612-626.
[2] Jose, M. (2013). The study of cell wall structure and cellulose-cellulase interactions through fluorescence microscopy. Cellulose, 20, 2291-2309.
[3] Hubbe, A. M., Chandra, R.P., Dogu, D., & Velzen, S.T.J. (2019). Analytical staining of cellulosic materials: A Review. BioResources, 14(3), 7387-7464.
[4] Ding, Q., Han, W., Li, X., Jiang, Y., & Zhao, C. (2020). New insights into the autofluorescence properties of cellulose/ Nanocellulose. Scientific Reports, 10, 21387-21395.
[5] Olmstead, J.A., Zhu, J.A., & Gray, D.G. (1995). Fluorescence spectroscopy of mechanical pulps III: Effect of chlorite delignification. Canadian Journal of Chemistry, 73(11), 1955-1959.
[6] Hobisch, M.A., Bossu, J., Mandlez, D., Spirk, S., Eckhart, R., & Bauer, W. (2019). Localization of cellulose fines in paper via fluorescent labeling. Cellulose, 26, 6933-6942.
[7] Coletta, V.C., Rezende, C.A., da Conceição, F.R., Polikarpov, I., & Guimarães, F.E.G. (2013). Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy. Biotechnology for Biofuels, 6(1), 43.
[8] Stockert, J.C., and Blázquez-Castro., A. (2017). Fluorescence Microscopy in Life Sciences. Bentham Science Publishers, Sharjah, UAE, ISBN 978-1-68108-519-7.
[9] Hell, S.W., Stelzer, E.H.K., Lindek, S., & Cremer, C. (1994). Confocal microscopy with an increased detection aperture: Type-B 4Pi confocal microscopy. Optics Letters, 19(3), 222-224.
[10] Vicidomini, G. (2005). Image Formation in Fluorescence Microscopy. In: Evangelista, V., Barsanti, L., Passarelli, V., & Gualtieri, P. (eds) From Cells to Proteins: Imaging Nature across Dimensions. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3616-7_18.
[11] Ding, Q., Zeng, J., Wang, B., Gao, W., Chen, K., Yuan, Z., Xu, J., & Tang, D. (2018). Effect of retention rate of fluorescent cellulose nanofibrils on paper properties and structure. Carbohydrate Polymers, 186, 73-81.
[12] Sheikhali, H., & Khosravani, A. (2023). Fluorescent labeling methods by rhodamine B isothiocyanate in cellulose materials. Iranian Journal of Wood and Paper Industries, 13(4), 405-417. (In Persian)
[13] Donaldson, L. (2020). Autofluorescence in plants, Molecules, 25(10), 2393.
[14] Liukko, S., Tasapuro, V., & Liitiä., T. (2007). Fluorescence spectroscopy for chromophore studies on bleached kraft pulps. Holzforschung, 61(5), 509-515.
[15] Olmstead, J.A., & Gray, D.G. (1993). Fluorescence emission from mechanical pulp sheets. Journal of Photochemistry and Photobiology A: Chemistry, 73(1), 59-65.
[16] Castellan, A., Ruggiero, R., Frollini, E., Ramos, L.A., & Chirat, C. (2007). Studies on fluorescence of cellulosics. Holzforschung, 61, 504-508.
[17] Valeur, B., & Berberan-Santos, M.N. (2013). Molecular Fluorescence: Principles and Applications (2nd ed.), Wiley-VCH.
[18] Wang, S., Gao, W., Chen, K., Zeng, J., Xu, J., & Wang, B. (2018). An effective method for determining the retention and distribution of cellulose nanofibrils in paper handsheets by dye labeling. Tappi Journal, 17(3), 157-164.
[19] Whipple, W.L., & Maltesh, C. (2000). Visualizing flocculation and adsorbtion processes in papermaking using fluorescence microscopy. Langmuir, 16(7), 3124-3132.
[20] Ding, Q., Zeng, J., Wang, B., Gao, W., Chen, K., Yuan, Z. & Xu, J. (2017). Influence of binding mechanism on labeling efficiency and luminous properties of fluorescent cellulose nanocrystals. Carbohydrate Polymers, 175, 105-112.