مقایسۀ کارایی انواع مدل‌های رگرسیونی برای پیش‌بینی ثبات ابعاد چوب نراد تیمار حرارتی‌شده بر‌اساس شاخص‌های رنگ، زاویۀ تماس و کاهش جرم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه محقق اردبیلی، دانشکده کشاورزی و منابع طبیعی، گروه چوب و کاغذ

2 دانش آموخته کارشناسی ارشد، گروه علوم و صنایع چوب کاغذ، دانشگاه تربیت مدرس، دانشکده منابع طبیعی و علوم دریایی، نور، ایران

چکیده

این تحقیق با هدف پیش‌بینی جذب آب و واکشیدگی ابعاد چوب نراد (Abies alba) تیمار حرارتی‌شده در دماهای 180، 200 و 200 درجۀ سانتی‌گراد با رگرسیون خطی ساده، چندگانه و غیرخطی انجام گرفت. اختلاف رنگ کل (∆E)، اختلاف روشنایی (∆L)، زاویۀ تماس قطره و کاهش جرم، شاخص‌های پیش‌بینی‌کننده انتخاب شدند. نتایج نشان داد که مقادیر جذب آب و واکشیدگی در جهات طولی، مماسی و شعاعی با افزایش دمای تیمار کاهش یافتند؛ اما مقادیر مطلق ∆E، ∆L، زاویۀ تماس و کاهش جرم با افزایش دمای تیمار افزایش پیدا کردند. کمترین درصد میانگین مطلق خطا (MAPE) برای پیش‌بینی جذب آب با مدل رگرسیون ساده، مدل درجه سه براساس کاهش جرم با MAPE حدود 22/6 بود. کمترین MAPE برای پیش‌بینی واکشیدگی حجمی، مماسی، شعاعی به‌ترتیب 01/3، 55/3 و 2/4 و مربوط به رگرسیون ساده درجه سه براساس کاهش جرم بودند. مقادیر MAPE برای پیش‌بینی جذب آب، واکشیدگی مماسی، واکشیدگی شعاعی و واکشیدگی حجمی با مدل رگرسیون چندگانۀ خطی به‌ترتیب 11/6، 9/3، 89/3 و 7/2 بودند. مقادیر متناظر آنها نیز برای مدل رگرسیون چندگانۀ غیرخطی به‌ترتیب 76/5، 86/3، 6/3 و 61/2 بود. ازآنجا که MAPE کمتر از 10 درصد برای پیش‌بینی رضایت‌بخش است، نتایج نشان داد که مدل‌های بررسی‌شده با دقت قابل قبولی جذب آب و واکشیدگی ابعاد چوب تیمار حرارتی‌شده را پیش‌بینی کرده‌اند. بهترین مدل رگرسیونی از نظر زمان و هزینه، مدل ساده و بهترین شاخص پیش‌بینی‌کننده از نظر زمان، هزینه و قابلیت اندازه‌گیری در خط شاخص تغییر رنگ است.

کلیدواژه‌ها


عنوان مقاله [English]

Performance evaluation of regression models for predicting dimensional stability of heat-treated silver fir wood based on mass loss, contact angle, and color changes

نویسندگان [English]

  • Akbar Rostampour Haftkhani 1
  • Farshid Abdoli 2
  • Mohammad Reza Abdeh 2
1 Faculty member of University of Mahaghegh Ardabili, Faculty of Agriculture and Natural Resources, Department of Wood Science and Technology
2 MSc, Department of wood and paper science, Faculty of Natural Resources, University of Tarbiat Modares, Noor, I.R. Iran.
چکیده [English]

This study aimed to predict water absorption (WA) and swelling of heat-treated silver fir wood (Abies alba) at 180, 200, and 220 oC by simple regression, multiple linear regression, as well as multiple non-linear regression models. ∆E (total color difference), ∆L (lightness difference), contact angle (CA), and mass loss (ML) were used as predictors. The results showed that WA, volumetric swelling (SV), swelling in longitudinal, radial, and tangential directions (SL, SR, and ST) decreased with the increase of heat-treatment temperature, but the values of ∆E, ∆L, CA, and ML increased. The lowest mean absolute percentage error (MAPE) for the prediction of WA with the simple regression models was related to the Cubic model based on ML equal to 6.22. The lowest MAPE for the prediction of SV, SR, and ST were related to the Cubic model based on ML equal to 3.01, 3.55, and 4.2, respectively. The MAPE values for the prediction of WA, ST, SR, and SV by the multiple linear regression model were 6.11, 3.9, 3.89, and 2.7, respectively. Their corresponding values for the non-linear regression model were 5.76, 3.86, 3.6, and 2.61, respectively. Since MAPE below 10% is satisfactory for predicting, the studied models have predicted WA and their corresponding swelling of heat-treated wood with acceptable accuracy. The best time and cost-efficient regression model is the simple model, and the best predictor in terms of time, cost, and the ability to measure in line is the color index.

کلیدواژه‌ها [English]

  • color index
  • contact angle
  • dimensional stability
  • heat-treatment
  • mass loss
  • regression models
[1]. Tarmian, A., and Mastouri, A. (2018). Water-repellent efficiency of thermally modified wood as affected by its permeability. Journal of Forestry Research, 29 (3), 859-867.
[2]. Fu, Z., Zhou, Y., Gao, X., Liu, H., and Zhou, F. (2019). Changes of water related properties in radiata pine wood due to heat treatment. Construction and Building Materials, 227 116692.
[3]. Sivrikaya, H., Tesařová, D., Jeřábková, E., and Can, A. (2019). Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. Journal of Building Engineering, 26 100918.
[4]. Fu, Z., Zhou, F., Gao, X., Weng, X., and Zhou, Y. (2020). Assessment of mechanical properties based on the changes of chromatic values in heat treatment wood. Measurement, 152 107215.
[5]. Sivrikaya, H., Hosseinpourpia, R., Ahmed, S. A., and Adamopoulos, S. (2020). Vacuum-heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol. Wood Material Science & Engineering 1-9.
[6]. Ozsahin, S., and Murat, M. (2018). Prediction of equilibrium moisture content and specific gravity of heat treated wood by artificial neural networks. European journal of wood and wood products, 76 (2), 563-572.
[7]. Tiryaki, S., Bardak, S., Aydin, A., and Nemli, G. (2016). Analysis of volumetric swelling and shrinkage of heat treated woods: Experimental and artificial neural network modeling approach. Maderas. Ciencia y tecnología, 18 (3), 477-492.
[8]. Bekhta, P. (2020). Effect of heat treatment on some physical and mechanical properties of birch plywood. European Journal of Wood and Wood Products, 78 (4), 683-691.
[9]. Tiryaki, S., and Aydın, A. (2014). An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 62 102-108.
[10]. Van Nguyen, T. H., Nguyen, T. T., Ji, X., and Guo, M. (2018). Predicting color change in wood during heat treatment using an artificial neural network model. BioResources, 13 (3), 6250-6264.
[11]. Tiryaki, S., and Hamzaçebi, C. (2014). Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Measurement, 49 266-274.
[12]. Tiryaki, S., Özşahin, Ş., and Yıldırım, İ. (2014). Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods. International Journal of Adhesion and Adhesives, 55 29-36.
[13]. Nasir, V., Nourian, S., Avramidis, S., and Cool. (2019). Prediction of physical and mechanical properties of thermally modified wood based on color change evaluated by means of “group method of data handling”(GMDH) neural network. Holzforschung, 73 (4), 381-392.
[14]. ASTM, A. (2009). D143-09: standard test methods for small clear specimens of timber. West Conshohocken, PA, USA: ASTM International.
[15]. ASTM, D. (2003). 2244. Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. American Society for Testing and Materials, West Conshohocken, PA.
[16]. Mitsui, K., Takada, H., Sugiyama, M., and Hasegawa, R. (2001). Changes in the properties of light-irradiated wood with heat treatment. Part 1. Effect of treatment conditions on the change in color. Holzforschung, 55 (6), 601-605.
[17]. Zaman, A., Alen, R., and Kotilainen, R. (2000). Heat behavior of Pinus sylvestris and Betula pendula at 200-230 C. Wood and Fiber Science, 32 (2), 138-143.
[18]. Bekhta, P., and Niemz, P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood.
[19]. Jennings, J. D., Zink-Sharp, A., Frazier, C. E., and Kamke, F. A. (2006). Properties of compression-densified wood, Part II: surface energy. Journal of adhesion science and technology, 20 (4), 335-344.
[20]. Lewis, C. (1982). International and Business Forecasting Methods Butterworths: London.
[21]. Williams, P. (2001). Implementation of Near-infrared Technology. Near-Infrared Technology in the Agricultural and Food Industries, and Edition.
[22]. Aydin, G., Karakurt, I., and Hamzacebi, C. (2015). Performance prediction of diamond sawblades using artificial neural network and regression analysis. Arabian Journal for Science and Engineering, 40 (7), 2003-2012