ارزیابی کمی پیوستگی لکه‌های جنگل در حوضۀ آبریز دریای خزر با استفاده از شاخص‌های سیمای سرزمین و نظریۀ گراف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست دانشکده منابع طبیعی دانشگاه تهران

2 دانشکده منابع طبیعی دانشگاه تهران

3 دانشگاه تهران، دانشکده منابع طبیعی، گروه محیط زیست

4 هیات علمی

چکیده

جنگل‌های ناحیه خزری از مهمترین منایع جنگلی کشورند، اما آنچه به صورت یک خلا بزرگ در تحقیقات این حوزه دیده می‌شود لزوم توجه به ابعاد ساختاری به ویژه حفظ پیوستگی ساختاری این جنگلها است. تحقیق حاضر با هدف ارزیابی و مقایسه شاخص‌های پیوستگی سیمای سرزمین در مورد لکه‌های جنگلی حوزه آبریز دریای خزر انجام شد. برای این منظور، ابتدا لایه جنگل از نقشه پوشش سرزمین استخراج و تعداد 25 حوزه آبخیز کلان انتخاب شدند. پیوستگی سیمای سرزمین از منظر سنجه‌های سیمای سرزمین (چهار شاخص) و شاخص‌های تئوری گراف (11 شاخص) تحلیل و محاسبه شد. سپس، با استانداردسازی شاخص‌های پیوستگی محاسبه شده در محدوده صفر تا 1، و تلفیق آنها، یک عدد نهایی پیوستگی برای هر حوزه آبخیز بدست آمد که بین 571/0 تا 274/0 متغیر بود. این محدوده در چهار طبقه از کم به زیاد، طبقه‌بندی شد. نتایج نشان داد شاخص‌های پیوستگی لکه‌های جنگلی در تمام ناحیه خزر، بسیار پایین بوده به طوری که 80% حوزه‌ها در طبقه پیوستگی خیلی کم و کم قرار می‌گیرند. حوزه‌ شماره 9 (سردآبرود، شلمانرود) و حوزه شماره 7 (چالوس) به ترتیب با عدد پیوستگی نهایی 274/0 و 276/0 در وضعیت بسیار نامطلوب قرار دارند و تنها دو حوزه شماره 14 (چلاو و پنجاب) و شماره 4 (پسیخان و شاخرز) به ترتیب با عدد پیوستگی نهایی 571/0 و 540/0 وضعیت مناسب‌تری از نظر شاخص‌های پیوستگی دارند. با توجه اهمیت حفظ پیوستگی لکه‌های جنگل، و نقش آن در حفظ کارکردهای جنگل‌های خزری، نتایج این پژوهش در برنامه‌های مدیریت و احیا جنگل‌ کاربرد خواهد داشت

کلیدواژه‌ها


عنوان مقاله [English]

Quantitative assessment of connectivity of forest patches in Caspian Sea catchment using landscape and graph theory indexes

نویسندگان [English]

  • Sahar Heidari Masteali 1
  • Bahman Jabbarian Amiri 2
  • Mohammad Kaboli 3
  • mahmoud bayat 4
1 Department of Environment, university of Tehran.
2 university of Tehran, department of environment
3 University of Tehran, Department of environment
4 Assistant Prof., Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
چکیده [English]

The forests of the Caspian region are one of the most important forest resources in Iran, but what is seen as a large gap in research is the need to pay attention to the structural dimensions, especially to maintain the structural connectivity of these forests. The aim of this study was to assess and compare the indicators of forest landscape in the Caspian Sea watersheds. At first, the forest layer was extracted from the land cover map and 25 large watersheds were selected to study and compare the connectivity indicators. The connectivity of the terrestrial landscape was analyzed using landscaping metrics and graph theory indicators, by Fragstats and Conefor softwares respectively. Finally, by standardizing the calculated connectivity indicators, a final connectivity score was obtained for each watershed. The results showed that the indicators of forest patches connectivity in the whole Caspian catchment are very low, so that 80% of the watersheds are in the category of very low and low connectivity. Watershed 9 (Sardabroud, Shalmnroud) and 7 (Chalous) are in a very unfavorable situation, and only two watersheds of 14 (Chalav, Panjab) and 4 (Pasikhan), in the area of Chalav and Punjab, in the Haraz River, and the Shakharz, Pesikhan rivers, are in a better situation in terms of connectivity indicators. Considering the importance of preserving the structure and connectivity of forest patches, the results of this study show the need for special attention to the management and restoration programs of these forests.

کلیدواژه‌ها [English]

  • Forest fragmentation
  • Hyrcanian forest
  • Landscape ecology
  • Structural connectivity
[1]. Tischendorf, L., and Fahrig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90: 7-19.
[2]. Zio´łkowska, E., Ostapowicz, K., Radeloff, VC., and Kuemmerle, T. (2014). Effects of different matrix representations and connectivity measures on habitat network assessments. Landsc Ecology, 29:1551–1570
[3]. Magle, SB., Theobald, DM., and Crooks, KR. (2009). A comparison of metrics predicting landscape connectivity for a highly interactive species along an urban gradient in Colorado, USA. Landsc Ecol, 24(2):267–280.
[4]. Mallarach, J. M., and Marull, J. (2006). Impact assessment of ecological connectivity at the regional level: recent developments in the Barcelona Metropolitan Area. Impact Assessment and Project Appraisal, 24(2): 127-137.
[5]. Darvishi, A., Mobarghaee Dinan, N., Barghjelveh, S., and Yousefi, M. (2020). Assessment and Spatial Planning of Landscape Ecological Connectivity for Biodiversity Management (Case Study: Qazvin Province). Iranian Journal of Applied Ecology, 9 (1) :15-29.
[6]. Spanowicz, A.G. and Jaeger, J.A. (2019). Measuring landscape connectivity: On the importance of within-patch connectivity. Landscape Ecology, 34(10): 2261-2278.
[7]. Kettunen, M., Terry, A., Tucker, G., and Jones, A. (2007). Guidance on the maintenance of landscape connectivity features of major importance for wild flora and fauna- Guidance on the implementation of Article 3 of the Birds Directive (79/409/EEC). Institute for European Environmental Policy (IEEP), Brussels.
[8]. Hosseini Vardei, M., Salman Mahini, A., Monavari, M., and Kheirkhah Zarkesh, M. (2012). Using landscape metrics in cumulative effects assessment of road networkon tree cover. Journal of Natural Environment, 2:139-152
[9]. Urban, D. L., Minor, E. S., Treml, E. A., and Schick, R. S. (2009). Graph model of habitat mosaics. Ecology Letters, 12: 260-273.
[10]. Urban, D., and Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. Ecology, 82(5): 1205-1218.
[11]. Drake, J., Griffis-Kyle, K., and Mc-Intyre, N. (2017). Using nested connectivity models to resolve management conflicts of isolated water networks in the Sonoran Desert. Ecosphere, 8(1): 1-22.
[12]. Galpern, P., Manseau, M., and Fall, A. (2011). Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biological Conservation, 144(1): 44-55.
[13]. Zetterberg, A., Mörtberg and, U. M., Balfors, B. (2010). Making graph theory operational for landscape ecological assessments, planning, and design. Landscape and Urban Planning, 95: 181-191.
[14]. Poodat, F., Arrowsmith C., Mikaeili Tabrizi, A., and Gordon, A. (2018). Application of Graph Theory in Landscape Ecology The Case Study: Assessment of Habitat Connectivity within Greater Melbourne . Iranian Journal of Applied Ecology, 6 (4) :81-95.
[15]. Shafinejad, S., Poodat, F., and Farrokhian, F. (2018). Assessment of ecological connectivity of urban green patches using graph theory: the case study of Ahvaz Metropolitan Area. Iranian Journal of Applied Ecology, 7 (1) :1-11.
[16]. Mostafazadeh, R., Jafari, A., and Keivan-behjou, F. (2018). Comparing the rangelands structure and degradation of landscape connectivity in iril sub-watersheds, Ardabil Province. Iranian Journal of Applied Ecology, 7 (1) :41-53.
[17]. Alaei, N., Mostafazadeh, R., Esmaliouri, A., Sharari, M., Hazbavi, Z. (2020). Assessment and Comparison of Landscape Connectivity in KoozehTopraghi Watershed, Ardabil Province. Iranian Journal of Applied Ecology, 8 (4) :19-34.
[18]. Nazar Neghad, H., Hosseini, M., and Mostafazadeh, R. (2020). Assessment of Changes in Landuse Connectivity and Pattern using Landscape Metrics in the Zolachai Watershed, Salmas. Geographic Planning of Space Quartrly Journal, 34:53-66.
[19]. Devi, B.S., Murthy, M.S.R., Debnath, B. and Jha, C.S. (2013). Forest patch connectivity diagnostics and prioritization using graph theory. Ecological Modelling, 251: 279-287.
[20]. Baranyi, G., Saura, S., Podanic, J., and Jord, J. (2011). Contribution of habitat patches to network connectivity: Redundancy and uniqueness of topological indices. Ecological Indicators, 11: 1301-1310.
[21]. Forman, K. and Godron, M. (1986). Landscape ecology. John Wiley, New York. 432 pp.
[22]. Farina, A. 1998. Principles and methods in landscape ecology. Springer, The Netherlands, 235pp.
[23]. McGarigal, K., Marks, B.J., (1994). Fragstats: Spatial pattern analysis program for quantifying landscape structure. 134 pages, Available in Patch Analyst software help (metrics definition).
[24]. Bodina, O., and Saurac, S. (2010). Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecological Modelling, 221: 2393-2405.
[25]. Mirzayi, M., Riyahi Bakhtiyari, A., Salman Mahini, A., and Gholamalifard, M. (2013). Investigating the land cover changes in mazandaran province using landscape ecology’s metrics between 1984 - 2010. Iranian Journal of Applied Ecology, 2 (4) :37-55.
[26]. Forman, R. T. T. (1995). Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge, England.
[27]. Inkoom, J.N., Frank, S., Greve, K., Walz, U. and Fürst, C., 2018. Suitability of different landscape metrics for the assessments of patchy landscapes in West Africa. Ecological Indicators, 85, 117-127.
[28]. Karami, P., and MirSanjari, M. (2018). Analysis of Landscape Degradation in the Hawizeh Wetland by Using Remote Sensing. Wetland Ecobiology, 10 (1) :39-54.
[29]. Ghosh, A., Munshi, M., Areendran, G., and Joshi, P.K. (2012). Pattern space analysis of landscape metrics for detecting changes in forests of Himalayan foothills. Asian journal of geoinformatics, 12(1): 1-12.
[30]. Pascual-Hortal, L., and Saura, S. (2007). Impact of spatial scale on the identification of critical habitat patches for the maintenance of landscape connectivity. Landscape and Urban Planning, 83(2-3): 176-186.