بررسی ساختار عمودی و اجتماعات مکانی گونة راش با استفاده از تابع O-ring در جنگل خیرود نوشهر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته مقطع دکتری-دانشگاه تهران

2 استاد- دانشکده منابع طبیعی-دانشگاه تهران

3 دانشیار-دانشکده منابع طبیعی دانشگاه تهران

4 استاد - دانشکده منابع طبیعی دانشگاه تهران

چکیده

هدف از مطالعه حاضر، بررسی الگوی مکانی و اجتماعات مکانی گونه راش در طبقات ارتفاعی در توده های دست نخورده راش میباشد. بدین منظور منطقه ای به مساحت 25 هکتار با تیپ راش در بخش گرازبن جنگل خیرود انتخاب گردید و کلیه پایه های راش با قطر برابر سینه بیشتر از 5/7 سانتی متر اندازه گیری شدند و قطر برابر سینه و موقعیت مکانی آنها ثبت شد. با استفاده از رابطه قطر و ارتفاع گونه راش در بخش گرازبن، ارتفاع درختان محاسبه گردید. سپس درختان به چهار طبقه ارتفاعی (ارتفاع کمتر از 15 متر (S)، 15 تا 25 متر (L)، 25 تا 35 متر (M)و بیشتر از 35 متر (U)) تقسیم و الگوی مکانی در هر یک از طبقات ارتفاعی با استفاده از تابع O-ring یک متغیره و اجتماعات مکانی میان طبقات ارتفاعی مختلف با استفاده از تابع دو متغیره O-ring آنالیز شد. نتایج تحلیل ها نشان داد الگوی مکانی راش در طبقه ارتفاعی (S)، کپه ای و در طبقه ارتفاعی (L)، تا فاصله 21 متر کپه ای و پس از آن تصادفی; در طبقه ارتفاعی (M) تا فاصله هشت متر الگوی کپه ای و پس از آن تصادفی;و در طبقه ارتفاعی U الگوی پراکنش گونه راش تصادفی می باشد. نتایج آنالیز دو متغیره O-ring نشان داد رابطه متقابل پایه های راش در طبقه ارتفاعی S با سایر طبقات ارتفاعی تا فاصله 30 تا 40 متری از نوع جذب می باشد. مطالعه حاضر کاربرد تابع O-ring را در بررسی ساختار عمودی اکوسیستم های جنگلی نشان می دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation on vertical structure and spatial associations of Fagus orientalis lipsky using O-ring function in Kheyrud forest, Nowshahr

نویسنده [English]

  • Zahra Nouri 1
1 PhD graduated-University of Tehran
چکیده [English]

This study aims at analyzing spatial pattern and associations of Fagus oriantalis Lipsky in different vertical classes in intact beech forests. Data collection was done in 25 ha plot in Gorazbon district of Educational and Experimental Forests of University of Tehran. Species and DBH of all trees with DBH > 7.5 cm were recorded. The location of each tree was determined using azimuth and distance method in order to map the tree positions. Height of trees was calculated using diameter – height model developed for Gorazbon district. Trees were then divided in 4 Height classes: 25 m (U). Univariate O-ring statistic was used to analyze the spatial patterns of Fagus orientalis at different tree height classes, and the bivariate O-ring statistic was used to analyze interspecies spatial associations among these height classes. Programita software was used for all analysis. Results showed spatial pattern of Fagus orientalis in height class (S) was clustered. In height class (L) spatial pattern was clustered up to distance of 21 m and then changed to random pattern. In height class (M) spatial pattern was aggregated up to distance 8 meter and then changed to random pattern and in height class (U) Fagus orientalis showed random spatial pattern in all distances. Bivariate O-ring analysis showed positive correlation between trees at height class (S) and other height classes up to 30-40 m. Present study showed application of O-ring statistic in vertical structure analysis of forest ecosystems.

کلیدواژه‌ها [English]

  • Fagus orientalis Lipsky
  • Kheyroud forest
  • O-ring function
  • Spatial Associations
  • spatial point pattern
  • and vertical structure
[1]. Yuanfa, L., Shaoming, Y., Gangying, H., Yanbo, H., and Zhonghua, Z.H. (2014). Spatial structure of timber harvested according to structure-based forest management. Forest Ecology and Management, 332: 106-116.

[2]. Kint, V., Robert, D.W., and Noel, L. (2004). Evaluation of sampling methods for estimation of structural indices in forest stands. Ecological Modeling, 180: 461-476.

[3]. Chen, J., and Bradshaw, G.A. (1999). Forest structure in space: a case study of an old growth spruce forest in Changbaishan Natural Reserve, PR China. Forest Ecology and Management, 120: 219-233.

[4]. Fonseca, M.G., Martini, A.M.Z., and dos Santos, F.A.M. (2004). Spatial structure of Aspidosperma polyneuron in two semi-deciduous forests in southeast Brazil. Journal of Vegetation Science, 15 (1): 41–48.

[5]. Salas, C., LeMay, V., Nunez, P., Pacheco, P., and Espinosa, A. (2006). Spatial patterns in an old-growth Nothofagus obliqua forest in south-central Chile. Forest Ecology and Management, 231:38-46.

[6]. Nakashizuka, T. (2001). Species coexistence in temperate, mixed deciduous forests. Trends in Ecology and Evolution, 16: 205–210.

[7]. Kohyama, T. (1993). Size-structured tree populations in gap dynamics forest: the forest architecture hypothesis for the stable coexistence of species. Journal of Ecology, 81:131–143.

[8]. Lemay, V., Pommerening, A., and Marshall, P. (2009). Spatio-temporal structure of multi-storied, multi-aged interior Douglas fir (Pseudotsuga menziesii var. glauca) stands. Journal of Ecology, 97: 1062-1074.

[9]. Hara, T., Nishimura, N., and Yamamoto, S. (1995). Tree competition and species coexistence in a cool-temperate old-growth forest in southwestern Japan. Journal of Vegetation Science, 6:565–574.

[10]. Hao, Z., Zhang, J.B., Song, J., and Li, B. (2007). Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. Forest Ecology and Management, 252: 1-11.

[11]. Marvie Mohadjer, M.R. (2005(. Silviculture. University of Tehran Press, Tehran .387 p.

 

 

 [12]. Marvie Mohadjer, M.R., Zobeiri, M., Etemad, V., and Jour Gholami, M. (2009). Performing the single selection method at compartment level and necessity for full inventory of tree species (Case study: Gorazbon district in Kheyroud Forest). Journal of Iranian Natural Resources, 61(4): 889-908.

[13]. Bayat, M., Namiranian, M., and Zobeiri, M. (2014). Volume, Height and Wood Production Modeling using the Changes in a Nine Years Rotation (Case Study: Gorazbon District in Kheyroud Forest, North of Iran) Journal of Forests and Wood Products, 67(3):423-435.

[14]. Wiegand, T., and Moloney, K.A. (2004). Rings, circles, and null-models for points pattern analysis in ecology. Oikos, 104:209–229.

[15]. Zenner, E.K., Sagheb-Talebi, Kh., Akhavan, R., and Peck, J.E. (2015). Integration of small-scale canopy dynamics smoothes live-tree structural complexity across development stages in old-growth Oriental beech (fagus orientalis Lipsky) forests at the multi-gap scale. Forest Ecology and Management, 335:26-36.

[16]. Graz, P.F. (2004). The behavior of the species mingling index Msp in relation to species dominance and dispersion. European Journal of Forest Research, 123:87-92.

[17]. Wang, X., Ye, J., Li, B., Zhang, J., Lin, F., and Hao Z. (2010). Spatial distributions of species in an old- growth temperate forest, northeastern China. Canadian Journal of Forest Research, 40:1011-1019.

[18]. Freund, J.A., Franklin, J.F., and Lutz, J.A. (2015). Structure of early old-growth Douglas-fir forests in the Pacific Northwest. Forest Ecology and Management, 335: 11–25.

[19]. Cheng, X., Han, H., Kang, F. Song, Y., and Liu, K. (2013). Point pattern analysis of different life stages of Quercus liaotungensis in Lingkong Mountain, Shanxi Province, China. Journal of Plant Interactions, 8:1-9.

 [20]. Alijani, V. and Feghhi, J. (2011). Investigation on the Elm (Ulmus glabra Hudson) Spatial Structure to Apply for Sustainable Management (Case Study: Gorazbon district, Kheirud Forest). Journal of Environmental Studies, 60: 35-44.