[1]. Faezipour, M., Hamzeh, Y., and Mirshokraii, S. A. (2000). Evaluation of kenaf as a raw material in paper manufacturing pulp. Iranian Journal Natural Resource, 53(3): 239-250.
[2]. Hossain, M. D., Hanafi, M. M., Jol, H., and Hazandy, A. H. (2011). Growth, yield and fiber morphology of kenaf (Hibiscus cannabinus L.) grown on sandy bris soil as influenced by different levels of carbon. African Journal of Biotechnology, 10(50): 10087-10094.
[3]. Bahtoee, A., Zargari, K., and Baniani, E. (2012). An Investigation on Fiber Production of Different Kenaf (Hibiscus cannabinus L.) Genotype. World Applied Sciences Journal, 16(1): 63-66.
[4]. Shakhes, J., Dehghani-Firouzabadi, M. R., Rezayati-Charani, P., and Zeinaly, F. (2010). Evaluation of harvesting time effects and cultivars of Kenaf on papermaking. BioResources, 5(2): 1268-1280.
[5]. Villar, J. C., Revilla, E., Gómez, N., Carbajo, J. M., and Simón, J. L. (2009). Improving the use of kenaf for kraft pulping by using mixtures of bast and core fibers. Industrial crops and products, 29: 301-307.
[6]. Mossello, A. A., Harun, J. Tahir, P. M., Resalati, H., Ibrahim, R., Fallah Shamsi, S. R., and Mohmamed, A. Z. (2010). A Review of Literatures Related of Using Kenaf for Pulp Production (Beating, Fractionation, and Recycled Fiber). Modern Applied Science, 4(9): 21-29.
[7]. Johansson, C., Bras, J., Mondragon, I., Nechita, P., Plackett, D., Šimon, P., Svetec, D. G., Virtanen, S., Baschetti, M. G., Breen, C., Clegg, F., and Aucejok, S. (2012). Renewable fibers and bio-based materials for packaging applications- a review of recent development. BioResources, 7(2): 2506-2552.
[8]. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorri, A. (2011). Nanocelluloses: A New Family of Nature-Based Material. Angewandte Chemie International Edition, 50: 5438-5466.
[9]. Spence, K. L., Venditti, R. A., Habibi, Y., Rojas, O. J., and Pawlak, J. J. (2010). The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresource Technology, 101: 5961-5968.
[10]. Spence, K. L., Venditti, R. A., Habibi, Y., Rojas, O. J., and Pawlak, J. J. (2010). Aspects of raw materials and processing conditions on the production and utilization of microfibrillated cellulose. In: International conference on nanotechnology for the forest products industry. Otaniemi, Espoo, Finland.
[11]. Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., and Pawlak, J. J. (2010). The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications. Cellulose, 17: 835-848.
[12]. Jonoobi, M., Harun, J., Shakeri, A., Misra, M., and Oksmand, K. (2009). Chemical composition, crystallinity, and thermal degradation of bleached and unbleached Kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources, 4(2): 626-639.
[13]. Jonoobi, M., Harun, J., Tahir, P. M., Shakeri, A., SaifulAzry, S., and Davoodi Makinejad M. (2011). Physicochemical characterization of pulp and nanofibers from kenaf stem. Materials Letters, 65: 1098-1100.
[14]. Stenstad, P., Andresen, M., Tanem, B. S., and Stenius, P. (2008). Chemical surface modifications of microfibrillated cellulose. Cellulose, 15: 35-45.
[15]. Rezayati Charani, P., Dehghani-Firouzabadi, M., Afra, E., and Shakeri, A. (2013). Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose, 20(2): 727-740.
[16]. Rezayati Charani, P., Dehghani-Firouzabadi, M., Afra, E., Blademo, Å., Naderi, A., and Lindström, T. (2013). Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose, 20(5): 2559-2567.
[17]. Ankerfors, M. and Lindstrom, T. (2011). Method for providing a nanocellulose involving modifying cellulose fibers. US Patent Application Publication, 2011/0036522 A1. 2p.
[18]. Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P. T., Ikkala, O., and Lindström, T. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8: 1934-1941.
[19]. Siro´, I. and Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17: 459-494.
[20]. Syverud, K. and Stenius, P. (2009). Strength and barrier properties of MFC films. Cellulose 16: 75-85.
[21]. Sehaqui, H., Liu, A., Zhou, Q., and Berglund, L. A. (2010). Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures. Biomacromolecules, 11(9): 2195-2198.
[22]. Henriksson, M., Henriksson, G., Berglund, L. A., and Lindström, T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43: 3434-3441.
[23]. Hassan, M. L., Mathew, A. P., Hassan, E. A., El-Wakil, N. A., and Oksman, K. (2012). Nanofibers from bagasse and rice straw: process optimization and properties. Wood Science and Technology, 46: 193-205.
[24]. Hassan, E. A., Hassan, M. L., and Oksman, K. (2011). Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood and fiber science, 43(1): 76-82.
[25]. Henriksson, M., Berglund, L. A., Isaksson, P., Lindström, T., and Nishino, T. (2008). Cellulose Nanopaper Structures of High Toughness. Biomacromolecules, 9: 1579-1585.