[1]. Hill, C. (2006). Wood Modification, Chemical, Thermal and Other Processes. Wiley, Chichester, 239 p.
[2]. Weiland, J. J. and Guyonnet, R. (2003). Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh und Werkstoff, 61 (3): 216-221.
[3]. Homan, W. J. and Jorissen, A. J. M. (2004). Wood modification developments. HERON, 49(4): 361-386.
[4]. Mohebby, B. and Sanaei, I. (2005). Influences of the hydro-thermal treatment on physical properties of beech wood (Fagus orientalis). 36th Annual Meeting Bangalore, India: 24-28.
[5]. Mitchell, P. (1988). Irreversible property changes of small loblolly pine specimens heated in air, nitrogen, or oxygen. Wood and Fiber Science, 20(3): 320-335.
[6]. Wang, J. (2007). Initiating evaluation of thermal-oil treatment for post-MPB lodgepole pine. forintek canada corp. Western Division 2665 East Mall Vancouver, British Columbia V6T 1W5, P: 41.
[7]. Windeisen, E., Strobel, C., and Wegener, G. (2007). Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology, 41(6): 523-536.
[8]. Manalo, R. D. and Acda, M. N. (2009). Effects of hot oil treatment on physical and mechanical properties of three species of Philippine bamboo. Journal of Tropical Forest Science, 21: 19-24.
[9]. Korkut, D., Korkut, S., Bekar, I., Budakçi, M., Dilik, T., and Çakicier, N. (2008). The effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L.) wood. International Journal of Molecular Sciences, 9: 1772-1783.
[10]. Hyvönen, A., Piltonen, P., and Niinimäki, J. (2006). Tall oil/water-emulsions as water repellents for scots pine sapwood. European Journal of Wood and Wood Products, 65(5): 68-73.
[11]. Tremblay, C. and Baribeault, J. (2009). Physical and mechanical properties of thermally modified aspen wood. the 4th european conference on wood modification. April 27-29, Stockholm, Sweden: 231-234.
[12]. Yildiz, S., Gezer, E., and Yildiz, U. (2006). Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment, 41: 1762-1766.
[13]. Kortelainen, S., Antikainen, T., and Viitaniemi, P. (2005). The water absorption of sapwood and heartwood of scots pine and norway spruce heat-treated at 170°C, 190°C, 210°C and 230°C. European Journal of Wood and Wood Products, 64: 192-197.
[14]. Boonstra, M., Acker, J., TJEERDSMA, B., and Kegel, E. (2007). Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science, 64(7): 679-690.
[15]. American Society for Testing and Materials, ASTM D 2395-02: Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials.
[16]. Mirzaei, G., Mohebby, M., and Tasooji, M. (2012). The effect of hydrothermal treatment on bond shear strength of beech wood. European Journal of Wood and Wood Products, 70(5): 705-709.
[17]. American Society for Testing and Materials, ASTM D 143-94. Testing Small Clear Timber Specimens.
[18]. American Society for Testing and Materials, ASTM D 256-04. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics.
[19]. Esteves, B. M. and Pereira, H. M. (2009). Wood modification by heat treatment: A review. BioResources, 4(1): 370-404.
[20]. Hietala, S., Maunu, S. L., Sundholm, F., Jämsä, S., and Viitaniemi, P. (2002). Structure of thermally modified wood studied by liquid state nmr measurements. Holzforschung, 56:522-528.
[21]. Sundqvist, B. (2004). Color changes and acid formation in wood during heating. Doctoral Thesis, Luleå University of Technology, Sweden: P 50.
[22]. Boonstra, MJ., Van Acker, J., Tjeerdsma, BF., and Kegel, EV. (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science, 64: 679-690.
[23]. Wang, J. Y. and Cooper, P. A. (2005). Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz als Roh-und Werkstoff, 63: 417-422.
[24]. Mirzaei, G. (2011). Effect of hydrothermal treatment on bond shear strength in beech (fagus orientalis) and paulownia (paulownia fortunei) woods, MSc. Thesis, Tarbiat Modares University, Faculty of Natural Resources: P. 83.
[25]. Garrote, G., Dominiguez, H., and Parajó, J. C. (1999). Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff, 57 (3): 191-202.
[26]. Winandy, J. E. and Rowell, R. M. (2005). Chemistry of Wood Strength. Handbook of Wood Chemistry and Wood Composites, CRC Press LLC. Boca Raton London New York Washington, D C, pp. 303-347.
[27]. Birkinshaw, C. and Dolan, S. (2009). Mechanism of strength loss in heat treated softwoods. European Conference on Wood Modification, 337-434.
[28]. Sailer, M., Rapp, A. O., and Leithoff, H. (2000). Improved resistance of scots pine and spruce by application of an oil-heat treatment. The International Research Group on Wood Preservation, IRG Document No. IRG/WP00–40162.
[29]. Mirzaei, G., Mohebby, B., and Tabarsa, T. (2013). Collapsibility and wettability of hydrothermally treated wood. Iranian Journal of Wood and Paper Industries, 3(1): 1-11.
[30]. Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P., and Militz, H. (1998). Characterization of thermal modified wood: molecular reasons for wood performance improvement. cpmas 13 c nmr characterization of thermal modified wood. Holz als Roh-und Werkstoff, 56: 149-153.