بررسی الگوی مکانی و رقابت درون‌گونه‏ای بلندمازو (Quercus Castaneifolia C.A.Mey.) با استفاده از تابع K رایپلی (مطالعة موردی: پارسل شاهد جنگل نکاـ ظالمرود، ساری)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد رشتۀ جنگلداری، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران

2 استادیار پژوهش، مؤسسۀ تحقیقات جنگل‌ها و مراتع کشور، تهران، ایران

3 استادیار گروه جنگلداری، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

4 دانشیار گروه جنگلداری، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

یکی از جنبه‌های آشکار ساختار یک تودۀ جنگلی الگوی مکانی درختان است. رقابت از عوامل تأثیرگذار بر ساختار جنگل است. شناخت رقابت در جنگل به‌ویژه هنگامی اهمیت دارد که هدف از مدیریتِ جنگل تقلید از پویایی اکوسیستم‌های طبیعی باشد. به این منظور، یک پارسل مدیریت‌نشده به مساحت 26 هکتار در منطقۀ نکا انتخاب و کلیۀ درختان بلندمازو با قطر برابرسینه بیشتر از 5/7 سانتی‌متر مورد اندازه‌گیری قطر قرار گرفته و مختصات دکارتی آن‌ها تعیین شد. سپس درختان اندازه‌گیری‌شده براساس قطر برابرسینه به چهار کلاسۀ کم‌قطر، میان‌قطر، قطور، و خیلی قطور تقسیم شدند. به‌منظور بررسی الگوی مکانی درختان بلندمازو در کل منطقه و در هر کلاسة قطری از تابع تک‌متغیره K رایپلی و برای بررسی رقابت درون‌گونه‌ای از تابع دومتغیرۀ K رایپلی استفاده شد. نتایج نشان داد که الگوی مکانی درختان به‌دلیل سنگین‌بودن بذر بلندمازو و فراوانی زیاد درختان جوان در فواصل کوتاه خوشه‌ای و با بزرگ‌شدن مقیاس بررسی تصادفی می‌شود. نتایج بررسی تأثیرات متقابل بین کلاسه‌های مختلف قطری درختان بلندمازو نشان داد که تأثیرات رقابتی مثبت و منفی متفاوتی در کلاسه‌های مختلف قطری به هم دارند که در فواصل متفاوتی با توجه به ابعاد درختان اتفاق می‌افتد که متأثر از نورپسندی، محدودیت پراکنش بذر، و رقابت درون‌گونه‌ای این گونه است. با توجه به اینکه پراکنش بلند‌مازوها از الگوی تصادفی تبعیت کرده، بنابراین دخالت‌های جنگل‌شناسی باید علاوه بر ملاحظۀ سایر عوامل مؤثر در نشانه‌گذاری، به گونه‏ای باشد که برداشت فقط به‌صورت پایه‏ای و تصادفی انجام شود و توده به‌سمت الگوی تصادفی سوق داده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Patterns and Intra-specific Competition of Chestnut leaf Oak (Quercus castaneifolia) using Ripley’s K-function (Case study: Neka-Zalemrood forest- Sari)

نویسندگان [English]

  • Farideh Omidvar Hosseini 1
  • Reza Akhavan 2
  • Hda Kia- Daliri 3
  • Asadollah Mataji 4
1 M.Sc. Student, Forestry Department, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
2 Assistant Professor, Research Institute of Forests and Rangelands, Tehran, I.R. Iran
3 Assistant Professor, Forestry Department, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
4 Associate Professor, Forestry Department, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
چکیده [English]

One of the most visible aspects of a forest stand structure is the spatial patterns of trees. Competition affects on forest structure and its understanding is important, when the purpose of forest management is to imitate the dynamic of natural ecosystems. For this purpose, an unmanaged intact forest was selected with 26 hectares area. All Chestnut leaf Oak (Quercus castaneifolia) trees with a diameter at breast height greater than 7.5 cm were measured and their Cartesian coordinates were determined. Then the measured trees were divided into four classes based on their diameter at breast height as small timber, medium timber, large timber and extra large timber. To investigate the spatial patterns of oak trees in the region and in the each diameter size class, and to examine the intra-specific competition the univariate and bivariate Ripley’s K- function were used, respectively. Results showed that the spatial patterns of oak trees was cluster in short distances due to heavy seed and high frequency of young trees and then changed to random distribution as distance increased. Moreover, interactions between diameter size classes showed that oak trees with different sizes had different positive (attraction) and negative (repulsion) competitive effects which occur at different scales based on the size of trees, influenced by light-demanding, limited seed dispersal and intra-specific competition of oaks with various diameter sizes. Since the Chestnut leaf Oak trees showed random distribution, the silvicultural interventions should be based on individuals and random single selection to create random spatial patterns in the stand.

کلیدواژه‌ها [English]

  • spatial patterns
  • intra-specific competition
  • Ripley's K- function
  • untouched stand
  • Chestnut leaf Oak
این تحقیق تشکر و قدردانی می‌شود.

References

[1]. Law, R., Lllian, J., Burslem, D.F.R.P., Gratzer, G., Gunatilleke, C.V.S., and Gunatilleke, I.A.U.N. (2009). Ecological information from spatial patterns of plants: insights from point process theory

(ESSAY REVIEW). Journal of Ecology, 97: 616-628.

[2]. Gray, H., and He, L. (2009). Spatial point pattern analysis for detecting density dependent

competition in a boreal chronosequence of Alberta. Forest Ecology and Management, 259: 98-106.

[3]. Kneeshaw, D.D., and Bergeron, Y. (1998). Canopy gap characteristics and tree replacement in the

southeastern boreal forest. Ecology, 79: 783-794.

[4]. Attiwill, P.M. (1994). The disturbance of forest ecosystems the ecological basis for conservation

management. Forest Ecology and Management, 63: 247-300.

[5]. Harvey, B.D., Leduc, A., Gauthier, S., and Bergeron, Y. (2002). Stand- landscape integration in natural disturbance- based management of the southern boreal forest. Forest Ecology and Management, 155: 369-385.

[6]. Ripley, B.D. (1977). Modeling spatial patterns. Journal of the Royal Statistical Society, B 39(2):

172-212.

[7]. Ripley, B.D. (1979). Test of randomness for spatial point patterns. Journal of the Royal Statistical

Society, B 41(3): 368-374.

[8]. Ripley, B.D. (1981). Spatial Statistics. John Wiley and Sons, 252 pp.

[9]. Moeur, M. (1993). Characterizing spatial patterns of tree using stem-mapped data. Forest Science,

39: 756-775.

[10]. Mataji, A., Babaie Kafaki, S., Safaee, H., and Kiadaliri, H. (2008). Spatial pattern of regeneration gaps in managed and unmanaged stands in natural Beech (Fagus orientalis) forests. Iranian Journal of Forest and Poplar Research, 16(1): 149-157.

[11]. Akhavan, R., Sagheb-Talebi, Kh., Hasani, M., and Parhizkar, P. (2010). Spatial patterns in untouched beech (Fagus orientalis Lipsky) stands over forest development stages in Kelardasht region of Iran. Iranian Journal of Forest and Poplar Research, 18(2): 322-336.

[12]. Safari, A., Shabanian, N., Heidari, R.H., Erfanifard, S.Y., and Pourreza, M. (2010). Spatial pattern

of Manna Oak trees (Quercus brantii Lindl.) in Bayangan forests of Kermanshah. Iranian Journal of

Forest and Poplar Research, 18(4): 596-608.

[13]. Akhavan, R., and Sagheb-Talebi, Kh. (2011). Application of bivariate Ripley's K- function for

studying competition and spatial association of trees (Case study: intact Oriental beech stands in

Kelardasht). Iranian Journal of Forest and Poplar Research, 19(4): 632-644.

[14]. Watt, A.S. (1974). Pattern and process in the plant community. Journal of Ecology, 35: 1-22.

[15]. Salas, C., LeMay, V., Nunez, P., Pacheco, P., and Espinosa, A. (2006). Spatial patterns in an old growth Nothofagus oblique forest in south-central Chile. Forest Ecology and Management, 231: 38-46.

[16]. Rozas, V., Zas, R., and Solla, A. (2009). Spatial structure of deciduous forest stands with contrasting human influence in northwest Spain. European Journal of Forest Research, 128: 273–285.

[17]. Zhang, Q., Zhang, Y., Peng, S., Yirdaw, E., and Wu, N. (2009). Spatial structure of Alpine trees in mountain Baima Xueshan on the southeast Tibetan plateau. Silva Fennica, 43(2): 197-208.

[18]. Anonymous (2008). Forest Management Plan of Neka-Zalemrood, 200 pp.

[19]. Eslami, A.R., Sagheb-Talebi, Kh., and Namiranian, M. (2007). Determining of equilibrium state in uneven – aged oriental beech forests of Northern-Iran. Iranian Journal of Forest and Poplar

Research, 20(4): 39-48.

[20]. Besag, J. (1977). Contribution to the discussion of Dr. Ripley's paper. Journal of the Royal

Statistical Society, B(39): 193-195.

[21]. Cressie, N.A.C. (1993). Statistics for Spatial Data. Wiley, New York, 900 pp.

[22]. Lotwick, H.W., and Silverman, B.W. (1982). Methods for analyzing spatial processes of several

types of points. Journal of the Royal Statistical Society, B 44: 406-413.

[23]. Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008). Statistical Analysis and Modeling of

Spatial Point Patterns. John & whiley Sons, 556 pp.

[24]. Cipriotti, P.A., and Aguitar, M.R. (2004). Effects of grazing on patch structure in a semi-arid two-

phase vegetation mosaic. Journal Vegetation Science, 16: 57-66.

[25]. Hao, Z., Zhang, J., Song, B., Ye, J., and Li, B. (2007). Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. Forest Ecology and Management, 252: 1-

11.

[26]. Akhavan, R., Sagheb-Talebi, Kh., Zenner, E. K., and Safavimanesh, F. (2012). Spatial patterns in different forest development stages of an intact old-growth Oriental beech forest in the Caspian region of Iran. European Journal of Forest Research, 131: 1355-1366.