مقایسۀ باران‏ربایی توده‏های طبیعی راش شرقی و دست‏کاشت پیسه‏آ در فصل رویش در منطقۀ کلاردشت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه جنگل‏داری و اقتصاد جنگل، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار گروه جنگل‏داری و اقتصاد جنگل، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استادیار گروه جنگل‏داری، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

این تحقیق برای برآورد مقدار باران‏ربایی (I) دورۀ رویش در تودۀ طبیعی راش شرقی و دست‏کاشت پیسه‏آ واقع در منطقۀ کلاردشت صورت گرفت. مقدار بارندگی (GR) با استفاده از چهار جمع‏آوری‏کنندۀ باران در منطقۀ باز اندازه‏گیری شد و برای جمع‏آوری تاج‏بارش (TF)‏، 20 جمع‏آوری‏کننده به‌صورت تصادفی در سطح هر توده نصب شد. مقدار باران‏ربایی از تفاوت بارندگی و تاج‏بارش برآورد شد. در طول 5 ماه از دورۀ رویش (تیر تا آذرماه 1391)، 13 رخداد بارندگی با عمق تجمعی 8/319 میلی‏متر اندازه‏گیری شد. از این مقدار، سهم باران‏ربایی راش و پیسه‏آ به‌ترتیب 8/84 و 5/155 میلی‏متر بود. متوسط درصد باران‏ربایی در هر بارندگی در توده‏های راش و پیسه‏آ به‌ترتیب 5/26 و 6/48 به‏دست آمد. نتایج این تحقیق نشان داد بین باران‏ربایی و بارندگی در هر دو توده همبستگی مثبت و توانی (راش 9/0r2= و پیسه‏آ 8/0 r2=) وجود دارد. بین درصد باران‏ربایی %)( ((I:GRو بارندگی نیز در هر دو توده رابطۀ لگاریتمی و کاهنده (تودۀ راش، 8/58 + (GR)ln15/9- =(I:GR)% ،66/0 =r2 و تودۀ پیسه‏آ، 49/91 + (GR)ln28/12- = (I:GR)% ،51/0 =r2) مشاهده شد. نتایج نشان می‏دهد میزان آب رسیده به کف جنگل در تودۀ راش بیشتر از تودۀ پیسه‏آ است که نشان می‏دهد جایگزینی پیسه‏آ با راش می‏تواند بر چرخۀ آبی حوضه‏های آبخیز تأثیر داشته باشد. آگاهی از مقدار باران‏ربایی گونه‏های غیر بومی همچون پیسه‏آ، که برای احیای جنگل‏های مخروبۀ خزری استفاده می‏شوند، در کنار سایر عوامل انتخاب یک گونه، به‌طور مثال تعرق، امری ضروری و مهم است.

کلیدواژه‌ها


عنوان مقاله [English]

Rainfall Interception in a Natural Stand of a Fagus orientalis and a Picea abies Plantation within the Growing Season in Kelardasht Region, North of Iran

نویسندگان [English]

  • Parisa Abbasian 1
  • Pedram Attarod 2
  • Seyed Mohammad Hojjati 3
1 MSc. Student, Department Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran
2 Associate Professor, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran
3 Assistant Professor, Sari University of Agricultural Sciences and Natural Resources, Sari, I.R. Iran
چکیده [English]

The aim of this study was to compare rainfall interception (I) in a natural forest of Fagus orientalis L. with a neighboring Picea abies plantation in Kelardasht area, the Caspian forests, North of Iran. To measure gross rainfall (GR), four manual collectors were installed in an open area adjacent to the forest sites and throughfall (TF) was measured using 20 collectors randomly located underneath of stands. I was calculated as the difference between GR and TF. Measurements were made from July to November, 2012. During the measurement, 13 rainfall events were recorded with a cumulative depth of 319.8 mm. Cumulative depth of I for F. orientais and P. abies were 84.4 mm and 155.5 mm, respectively. On the event-based measurements, average (I:GR)% in F. orientais and P. abies stands were found to be 26.5% and 48.6%, respectively. Positive power correlations were observed between I and GR in both stands (r2F. orientalis: 0.9; r2P. abies: 0.8). Results showed logarithmic correlations between I and (I:GR)% in F. orientais and P. abies forests ( r2F. orientalis = 0.66, (I:GR)% = -9.15ln(GR) + 58.8.; r2P. abies = 0.51, (I:GR)%= -12.28ln(GR) + 91.49). The greater amount of water reaches the forest floor in F. orientalis suggests that the planting of P. abies relative to F. orientalis will have a significant impact on the hydrological cycle of the watershed. Estimating I, along with the transpiration of species, is necessary to consider while selecting the adapted species for reforestation in the derelict areas of the Caspian forests.

کلیدواژه‌ها [English]

  • Fagus orientalis Lipsky
  • Kelardasht
  • Picea abies
  • Rainfall interception
  • Throughfall
[1]. Porporato, A., and Rodriguez, I. (2002). Ecohydrology a challenging multidisciplinary research perspective. Hydrological Sciences, 47: 811-821.

[2]. Van Dijk, A. (2004). Ecohydrology: it’s all in the game. Hydrological Processes, 18: 3683-3686.

[3] Deguchi, A., Hattori, S., and Park, H. (2006). The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. Journal of Hydrology, 319: 80-102.

[4]. Toba, T., and Ohta, T. (2005). An observational study of the factors that influence interception loss in boreal and temperate forests. Journal of Hydrology, 313: 208-220.

[5]. Fakhari, M.A., Babaei, M., and Saeedi Zand, M. (2010). Investigation on snow damage on plantations in Sourdar-Vatashan region (Chamestan, Mazandran). Iranian Journal of Forest and Poplar Research, 18: 447- 457.

[6]. Tabari, M. and Pourmajidian, M.R., (2001). Influence of thinning on Atlas Cedar (Cedrus atlantica Manetti Endl) in the north of Iran. In: Proceeding of the International Meeting on Silviculture of Cork Oak (Quercus suber L.) and Cedar (Cedrus atlantica Endl.). Oct. 22-25, Rabat, Morocco, PP. 19-24.

[7]. Pour-Ataei, M. (1974). Reforestation, seedling production and park construction. Journal of Forest and Rangeland, 16: 43-43.

[8]. Sagheb Talebi, Kh. (1989). The success of Picea abies afforestation in Kelardasht. Journal of Forest and Rangeland, 57: 35-35.

[9]. Mirbadian, A., and Sagheb Talebi, Kh. (1991). The success of Picea abies afforestation in Kelardasht. Publication of Forest and Range Organization, 36 pp.

[10]. Parhizkar, P., Sagheb-Talebi, Kh., Mattaji, A., Namiranian, M., Hasani, M., and Mortazavi, M. (2011). Tree and regeneration conditions within development stages in Kelardasht beech forest. Journal of Forest and Poplar Research, 19: 141-153.

[11]. Bagheri, H., Attarod, P., Etemad, V., Sharafieh, H., Ahmadi, M.T., and Bagheri, M. (2011). Rainfall interception loss by Cupressus arizonica and Pinus eldarica in an arid zone afforestation of Iran (Biyarjomand, Shahroud). Iranian Journal of Forest and Poplar Research, 19(2): 314-325.

[12]. Hoseini Ghaleh Bahmani, S.M., Attarod, P., and Ahmadi, M.T. (2011). Rainfall redistribution in natural pure stands of Quercus castaneifolia C.A.M. and Fagus orientalis L. in the Caspian forests (Case study: Kheyrud Forest). Iranian Journal of Forest, 3(3): 253-264.

[13]. Ahmadi, M.T., Attarod, P., Marvi Mohadjer, M.R., Rahmani, R., and Fathi, J. (2009). Partitioning rainfall into throughfall, stemflow, and interception loss in an oriental beech (Fagus orientalis Lipsky) forest during the growing season. Turkish Journal of Agriculture and Forestry, 33: 557-568.

[14]. Rowe, L.K. (1983). Rainfall interception by an evergreen beech forest, Nelson, New Zealand. Journal of Hydrology, 66: 143-158.

[15]. Johnson,R.C. (1990). The Interception,Throughfall and stemflow in a forest in highland Scotland and the comparison with other upland forests in the U.K. Journal of Hydrology, 118: 281-287.

[16]. Rutter, A.J., Morton, A.J., and Robins, P.C. (1975). A predictive model of rainfall interception in forests: II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, 12(1): 367-380.

[17]. Gash, J.H.C., Lloyd, C.R., and Lachaud, G. (1995). Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170 (1-4): 79-86.

[18]. Crockford, R.H., and Richardson, D.P. (2000). Partitioning of rainfall into throughfall, stemflow, and interception: effect of forest type, ground cover and climate. Hydrological Processes, 14: 2903-2920.

[19]. Pypker, T.G., Bond, B.J., Link, T.E., Marks, D., and Unsworth, M.H. (2005). The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and old growth Douglas-Fir forest. Agricultural and Forest Meteorology, 130: 113-129.

[20]. Herbst,M.,Roberts,J.M., Rosier, T.W., and Gowing, D.J. (2006). Measuring and modeling the rainfall interception loss by hedgerows in southern England.Agricultural and Forest Meteorology,141: 244-256.

[21]. Carlyle-Moses, D.E., Flores Laureano, J.S., and Price, A.G. (2004). Throughfall and throughfall spatial variability in Mediterranean oak forest communities of northeastern Mexico. Journal of Hydrology, 297: 124-135.

[22]. Fleischbein, K., Wilcke, W., Goller, R., Boy, J., Valarezo, C., Zech, W., and Knoblich, K. (2005). Rainfall interception in a lower mountain forest in Ecuador: effects of canopy properties. Hydrological Processes, 19: 1355-1371.

[23]. Staelens, J., Schrijver, A.D., Verheyenl, K., and Verhoest, N. (2008). Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrological Processes, 22: 33-45.

[24]. Gash, J.H.C., Wright, I.R., and Lloyd, C.R. (1980). Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 38: 49-58.

[25]. Crockford R.H., and Richardson, D.P. (1990). Partitioning of rainfall in a eucalypt forest and pine plantation in southeastern Australia: I. Throughfall measurement in a eucalypt forest: Effect of method and species composition. Hydrological Processes, 4: 131-144.

[26]. Lankreijer, H.J.M., Hendriks,M.J., and Klaassen, W. (1993). A comparison of models simulating rainfall interception of forests. Agricultural and Forest Meteorology, 64: 187-199.

[27]. Valente, F., David, J.S., and Gash, J.H.C. (1997). Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology, 190: 141-162.

[28]. Cao, Y., Ouyang, Z.Y., Zheng, H., Huang, Z.G., Wang, X.K., and Miao, H. (2008). Effects of forest plantation on rainfall redistribution and erosion in the red soil region of Southern China. Land Degradation Development, 19: 321-330.

[29]. Owens, M.K., Lyons, R.K., and Alejandro, C.J. (2006). Rainfall partitioning within semiarid juniper communities: Effects of event size and canopy cover. Hydrological Processes, 20(15): 3179‐3189.

[30]. Sraj, M., Brilly, M., and Mikos, M. (2008). Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agricultural and Forest Meteorology, 148: 121-134.

[31]. Bosch, J.M., and Hewlett, J.D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55: 3-23.