[1]. Shataee, Sh. (2003). Investigation on the possibility of beech forest type mapping using satellite data (Case study: Khyrood forest). Phd Thesis Tehran University, 155 pp.
[2]. Baatuuwie, N.B., and Leeuwen I.L.V. (2011). Evaluation of three classifiers in mapping forest stand types using medium resolution imagery: a case study in the Offinso Forest District, Ghana. African Journal of Environmental Science and Technology, 5(1): 25-36.
[3]. Quirós, E., Felicísimo Á.M., and Cuartero, A. (2009). Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images. Sensors, 9: 9011-9028.
[4]. Rashidi, F., Babaie Kafaki, S., and Oladi, DJ. (2009). Investigation on the capability of digital data of ETM+ sensor in seperating of forest types (Case study: Lafoor area of Savadkooh), Iranian Journal of Forest and Poplar Research, 17(13): 51-63.
[5]. Darvishsefat, A.A., Abbasi, M., and Marvi Mohadjer, M.R. (2009). Investigation on the possibility of beech forest type mapping using Landsat ETM+ data (Case study: Khyroud forest), Iranian Journal of Forest, 2(9): 105-113.
[6]. Kurt, I., Ture, M., and Kurum, A.T. (2008). Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert System Applied, 34(1): 366–374.
[7]. Sarunas, R. (1997). On dimensionality, sample size, and classification error of nonparametric linear classification algorithms IEEE Transactions on Pattern Analysis and Machine Intelligence, 19: 667–671.
[8]. Cortijo, F.J., and de la Blanca, N.P. (1999). The performance of regularized discriminant analysis versus non-parametric classifiers applied to high-dimensional image classification. International Journal Remote Sensing, 20: 3345–336.
[9]. Ham, J., Chen Y., Crawford, M.M., and Ghosh, J. (2005). Investigation of the random forest framework for classification of hyperspec- tral data. IEEE Transactions on Geoscience and Remote Sensing, 43(3):492–501.
[10]. Lawrence, R., and Wright, A. (2001). Rule-based classification systems using classification and regression tree (CART) analysis. Photogrammetric and Engineering Remote Sensing, 67:1137-1142.
[11]. Chen, D., and Stow, D. (2002). The effect of training strategies on supervised classification at different spatial resolutions. Photogrammetric Engineering & Remote Sensing, 68(11): 1155-1161.
[12]. Yarbrough, L.D., Easson, G., and Kuszmaul, J.S. (2005). Using at-sensor radiance and reflectance tasseled cap transforms applied to change detection for the ASTER sensor. IEEE Third International Workshop on the Analysis of Multi-temporal Remote Sensing Images, 16–18.
[13]. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone. C.J. (1984). Classification and regression trees. Wadsworth and Brooks/Cole, Monterey, California, USA.
[14]. Yoneyama, Y., Suzuki, S., Sawa, R., Yoneyama, K., Power, G.G., and Araki, T. (2002). Increased plasma adenosine concentrations and the severity of preeclampsia. Obstetrics & Gynecology. 100(6): 66-70.
[15]. Kalbi, S. (2010). Investigation estimation forest structure attributes using ASTER and SPOT-HRG satellite data (case study: Darabkola Forest). MSC Thesis Sari University. 107 pp.
[16]. Dietterich, T. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40: 139 –157.
[17]. Breiman, L. (2001). Random forests. Machine Learning, 45:15–32.
[18]. Yu. X., Hyypp, J., Vastaranta. M., Holopainen, M., Viitala., R. (2011). Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 66: 28–37.
[19]. Shataee, S., Kalbi, S., Fallah, A., Pelz, D. (2012). Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms. International Journal of Remote Sensing, 33(19): 6254-6280.
[20]. Foody, G.M. (2004). Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70: 627-634.