پایداری زمانی الگوهای مکانی تاج‌بارش تک‌درختان بلوط ایرانی در ناحیۀ رویشی زاگرس (مطالعۀ موردی: جنگل‏های اطراف شهر ایلام)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری جنگل‏داری، دانشکدۀ منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

2 دانشیار گروه جنگل‏داری و اقتصاد جنگل، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استاد گروه جنگل‏داری و اقتصاد جنگل، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

هدف از این مطالعه، بررسی توزیع مکانی و پایداری الگوهای تاج‌بارش پنج تک‌ درخت بلوط ایرانی (Quercus brantii var. Persica) در فصل غیر رویش در جنگل‏های زاگرس نزدیک شهر ایلام بود. ‏ تاج‌بارش، به کمک 16 جمع‌آوری‌کننده در هشت جهت زیر تاج‌پوشش هر تک‌درخت، و میزان بارندگی به کمک شش جمع‌آوری‌کنندۀ باران که در فضای بازی در نزدیکی رویشگاه بررسی شده بودند اندازه‏ گیری شد. میزان باران‌ربایی به‌صورت غیر مستقیم از تفاضل بارندگی و تاج‌بارش محاسبه شد.اندازه‏ گیری‏ ها به مدت سه ماه، از اواخر آذر 1389 تا اوایل فروردین 1390، انجام گرفت. در این دوره، 24 مورد بارندگی با مجموع عمق 4/302 میلی‏متر جمع‌آوری شد که به‌طور متوسط 3/14 درصد آن برای تک‌درختان بلوط ایرانی به‌صورت باران‌ربایی تبخیر یا صرف اشباع تاج‌‌پوشش شد. در نمودارهای پایداری زمانی، کمتر از 6 درصد از جمع‌آوری‌کننده‏ ها تفاوت معنی‏دار (05/0 =α) نسبت به میانگین نرمال‌شدۀ تاج‌بارش داشتند که بیانگر ناهمگنی کمتر تاج‌بارش در فصل استراحت در مقایسه با سایر مطالعات بر روی توده‏ های جنگلی است. ترتیب جمع‌آوری‌کننده‏ های تاج‌بارش در پلات‏ های پایداری زمانی به‌طور کلی پایین‌بودن مقدار تاج‌بارش در نزدیکی تنه برای تک‌درختان بلوط ایرانی را تأیید می‏کند. استفاده از نمودارهای پایداری زمانی در این مطالعه‏، مناسب‌بودن این روش را برای بررسی توزیع تاج‌بارش تک‌درختان بلوط ایرانی در طی زمان نشان می‏دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Temporal Stability of Throughfall Spatial Pattern under Individual Oak Trees in the Zagros Region (Case Study: Neighboring Forests of Ilam)

نویسندگان [English]

  • Omid Fathizadeh 1
  • Pedram Attarod 2
  • Ghavamodin Zahedi Amiri 3
  • Ali Asghar Darvishsefat 3
1 Ph.D Candidate, Faculty of Natural Resources and Marine Sciences, University of Tarbiat Modares, Noor, I.R. Iran
2 Associate Professor, Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran
3 Associate Professor, Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran
چکیده [English]

Spatio-temporal variability of throughfall (TF) has an important role on the biogeochemical processes,
soil, watershed hydrology as well as the nutrient cycle in forests. Spatial distribution and temporal
stability of TF patterns by five individual Persian oak trees (Quercus brantii var. Persica) in the
Zagros forests of western Iran, Ilam, was quantified. Sixteen TF manual gauges were placed beneath
the five selected tree canopies in the eight geographic directions and the gross rainfall (GR) was
measured by the mean of six homemade gauges records placed in an open area adjacent to the study
site. Rainfall interception (I) was indirectly estimated as the difference between GR and TF. The
measurements were recorded during three months from end of December 2010 to beginning of April
2011. During this period, 24 rainfall events with cumulative depth of 302.4 mm was collected, of
which on average 14.3% evaporated as I or expended as canopy storage by individual Persian oak
trees. Less than 6% of sampling points in the time stability plots deviated consistently (α= 0.05) from
the mean normalized TF, meaning lower heterogeneity of TF compared to other studies on the forest
stands. Moreover, generally ranking of TF collectors of time stability plots confirmed lower TF
concentrations near the tree trunks for individual Persian oak trees. Time stability plots in the current
study were appeared a useful tool to quantify TF distribution of individual Persian oak trees.

کلیدواژه‌ها [English]

  • Quercus brantii
  • Spatial Distribution
  • temporal stability
  • Throughfall
  • Zagros forests
[1]. Shachnovich, Y., Berliner, P.R., and Bar, P. (2008). Rainfall interception and spatial distribution of throughfall in a pine forest planted in an arid zone. Journal of Hydrology, 349: 168–177.
[2]. Keim, R.F., Skaugset, E., and Weiler, M. (2005). Temporal persistence of spatial patterns in throughfall. Journal of Hydrology, 314: 263–274.
[3]. Germer, S., Elsenbeer, H., and Moraes, J.M. (2006). Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondonia, Brazil). Hydrology andEarth System Sciences, 10: 383-393.
[4]. Ziegler, A.D., Giambelluca, T.W., Nullet, M.A., Sutherland, R.A., Tantasarin, C., Vogler, J.B., and Negishi, JN. (2009). Throughfall in an evergreen-dominated forest stand in northern Thailand: Comparison of mobile and stationary methods. Agricultural and Forest Meteorology, 149 (2): 373 – 384.
[5]. Bouten, W., Heimovaara, T., and Tiktak, A. (1992). Spatial pattern of throughfall and soil water dynamics in a Douglas fir stand. Water Resources Research, 28: 3227–3233.
[6]. Staelens, J., Schrijver, A.D., Verheyen, K., and Verhoest, N.E.C. (2006). Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. Journal of Hydrology, 330: 651–662.
[7]. Wullaert, H., Pohlert, T., Boy, J., Valarezo, C., and Wilcke, W. (2009). Spatial throughfall heterogeneity in a montane rain forest in Ecuador: Extent, temporal stability and drivers. Journal of Hydrology, 377: 71–79.
[8]. Gomez, J.A., Giraldez, J.V., and Fereres, E. (2001). Rainfall interception by olive trees in relation to leaf area. Agricultural Water Management, 15: 65-76.
[9]. Gomez, J.A., Vanderlinden, K., Giraldez, J.V., and Fereres, E. (2002). Rainfall concentration under olive trees. Agricultural Water Management, 55: 53–70.
[10]. David, T.S., Gash, J.H.C., Valente, F., Pereira, J.S., Ferreira, M.I., and David, J.S. (2006). Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah. Hydrological Processes, 20: 2713–2726.
[11]. Nanko, K., Onda, Y., Ito, A., and Morikawi, H. (2011). Spatial variability of throughfall under a single tree: Experimental study of rainfall amount, raindrops, and kinetic energy. Agricultural and Forest Meteorology, 151:1173-1182.
[12]. Levia, D.F., and Frost, E.E. (2006). Variability of throughfall volume and solute inputs in wooded ecosystems. Progress in Physical Geography, 30: 605–632.
[13]. Llorens, P., Poch, R., Latron, J., and Gallart, F. (1997). Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean moutainous abandoned area I. Monitoring design and results down to the event scale. Journal of Hydrology, 199: 331–345.
[14]. Marvie-Mohadjer, MR. (2006). Silviculture, University of Tehran Press, Tehran.
[15]. Green, S.R. (1993). Radiation balance, transpiration and photosynthesis of an isolated tree. Agricultural and Forest Meteorology, 64: 201-221.
[16]. Xiao, Q.F., McPherson, E.G., Ustin, S.L., Grismer, M.E., and Simpson, J.R. (2000). Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrological Processes, 14: 763–784.
[17]. Ahmadi, M.T., Attarod, P., and Bayramzadeh, V. (2011). Rainfall redistribution by an oriental beech (Fagus orientalis Lipsky) forest canopy in the Caspian forests, Northern Iran. Journal of Agriculture Science and Technology,  13: 1105-1120.
 [18]. Carlyle-Moses, D.E., Fores Laureano, J.S., and Price, A. (2004). Throughfall and throughfall spatial variabiltiy in Madrean oak forest communities of northeastern Mexico. Journal of Hydrology, 297: 124–135.
[19]. Raat, K.J., Draaijers, G.P.J., Schaap, M.G., Tietema, A., and Verstraten, J.M. (2002). Spatial variability of throughfall water and chemistry and forest floor water content in a Douglas fir forest stand. Hydrology and Earth System Sciences, 6: 363–374.
[20]. Vachaud, G., Silans, A.P.D., Balabanis, P., and Vauclin, M. (1985). Temporal stability of spatially measured soil water probability density function. Soil Science Society of America Journal, 49: 822-828.
[21]. Fathizadeh, O., Attarod, P., Pypker, T.G., Darvishsefat, A.A., and Zahedi Amiri, G.H. (2013). Seasonal variability of rainfall interception and canopy storage capacity under individual oak (Quercus brantii) trees of western Iran. Journal of Agricultural Science and Technology, 15: 175-188a.
[22]. Crockford, R.H., and Richardson, D.P. (2000). Partitioning of rainfall into throughfall, stemflow, and interception: Effect of forest type, ground cover and climate. Hydrological Processes, 14: 2903–2920.
[23]. Loustau, D., Berbigier, P., Granier, A., and Moussa, F.E. (1992). Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy. Journal of Hydrology, 138: 449–467.
[24]. Vellak, K., Paal, J., and Liira, J. (2003). Diversity and distribution pattern of bryophytes and vascular plants in a boreal spruce forest. Silva Fennica, 37 (1): 3–13.
[25]. Frost, W.E., and Edinger, S. (1991). Effects of tree canopies on soil characteristics of annual rangeland. Journal of Range Management, 44 (3): 286–288.
 
[26]. Fathizadeh, O., Attarod, P., Keim, R.F., Zahedi Amiri, G.H., and Darvishsefat, A.A. (2014). Spatial heterogeneity and temporal stability of throughfall under individual Quercus brantii Trees. Journal of Hydrological Processes, 28: 1124-1136.
[27]. Zimmermann, A., Wilcke, W., and Elsenbeer, H. (2007). Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador. Journal of hydrology, 343: 80-96.
[29]. Zimmermann, A., Germer, S., Neill, C.H.V., Krusche, A., and Elsenbeer, H. (2008). Spatio-temporal paterns of throughfall and solute deposition in an open tropical rain forest. Journal of Hydrology, 370: 87-102.
[29]. Hubert, H. (2004). The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrological Processes, 18: 1507–1511.