مقایسه تکنیک‌‌‌های مختلف پهنه‌‌بندی داده‌‌‌های اقلیمی برای تعیین مهم ترین فاکتور‌های مؤثر بر رویش درختان ناحیة مرتفع چهارباغ گرگان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی، گروه آبیاری و آبادانی، دانشکدۀ مهندسی و فنّاوری کشاورزی، دانشگاه تهران، کرج، ایران

2 استاد گروه آبیاری و آبادانی، دانشکدۀ مهندسی و فنّاوری کشاورزی، دانشگاه تهران، کرج، ایران

3 دانشیار گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران

4 استادیار گروه آبیاری و آبادانی، دانشکدۀ مهندسی و فنّاوری کشاورزی، دانشگاه تهران، کرج، ایران

چکیده

دانش اقلیم‏‏شناسیِ درختی با مطالعة ارتباط بین متغیر‏‏های اقلیمی و حلقه‏‏های درخت به بازسازی اقلیم گذشته می‏پردازد که پیش‏نیاز بسیاری از مطالعات کشاورزی و منابع طبیعی است. اصولاً درختان مناطق مرتفع حساسیت بیشتری به تغییرات آب‏و‏هوایی دارند، اما متأسفانه در مناطق مرتفع جنگلی، نظیر منطقۀ چهارباغ گرگان (منطقة مطالعاتی) هیچ‏ ایستگاه هواشناسی‏ای وجود ندارد. برای رفع این مشکل، در این تحقیق روش‏‏‏های مختلف درون‏‏یابی داده‏‏‏های دما و بارندگی در منطقة مورد مطالعه با یکدیگر مقایسه و بهترین روش درون‏‏یابی مشخص شد. سپس، با استفاده از روش برتر، متغیر‏های دما و بارندگی ما‏هانه طی دورة آماری 1982ـ2006 در سایت‏‏‏های نمونه‏‏برداری حلقه‏‏‏های درخت برای دو گونۀ ارس و بلوط محاسبه شد. در‏نهایت، همبستگی بین داده‏‏های سالانۀ عرض حلقه‏‏‏های درختان ارس و با بلوط متغیر‏های دما و بارندگی ما‏هانه، شاخص بارندگی استاندارد (SPI)، و شاخص اکتشاف خشکسالی (RDI)، ارزیابی شدند. نتایج نشان داد در بین روش‏‏های مختلف درون‏یابی، روش گرادیان خطی سه‏بعدی و روش هیبرید خطی و غیر خطی به‏ترتیب بهترین روش‏‏‏های درون‏یابی دما و بارندگی‏اند. تحلیل ضرایب همبستگی نشان داد که مؤثرترین عامل‏های هواشناسی بر رشد درختان بلوط، اثر مثبت شاخص SPI یک‏ماهۀ ماه ژوئن و اثر منفی دمای متوسط ماه مارس فصل رویش است. در‏مورد درختان ارس، بارندگی ماه ژوئیۀ فصل رویش و دمای متوسط ماه سپتامبر قبل از فصل رویش بر رشد درختان اثر منفی دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparing the Various Interpolation Techniques of Climatic Data for Determining the Most Important Factors Affecting the Trees Growth in the Elevated Areas of Chaharbagh, Gorgan

نویسندگان [English]

  • Mehdi Nadi 1
  • Ali Khalili 2
  • Kambiz Pourtahmasi 3
  • Javad Bazrafshan 4
1 Corresponding author,PhD student of Agrometeorology, Irrigation and reclamation Department, University College of Agriculture & Natural Resources, university of Tehran
2 Professor, Irrigation and reclamation Department, University College of Agriculture & Natural Resources, university of Tehran
3 Associate Professor, Wood & paper science & technology Department, University College of Agriculture & Natural Resources, university of Tehran
4 Assistant Professor, Irrigation and reclamation Department, University College of Agriculture & Natural Resources, university of Tehran
چکیده [English]

The dendroclimatology science reconstructs the past climates through studying the relationship
between climatic indices and tree rings which is a pre-requisite of agricultural and natural
resources studies. Basically, the tree species of highland regions are more sensitive to the
climatic conditions. Unfortunately, in the highland forest regions like Chaharbagh, Gorgan (case
study) there is nometeorological station. In order to solve this problem, in this study various
interpolation methods of temperature and precipitation data from the area understudy were
compared and the best methods were determined. Then, through using the best interpolation
methods, monthly temperature and precipitation variables in the period 1982-2006 were
calculated in the tree ring sampling points for two tree species (i.e., Juniperus polycarpus
and Quercus macranthera). Finally the correlation between yearly tree rings and monthly
temperature and precipitation, Standardized Drought Index (SPI), and Reconnaissance Drought
Index (RDI) were evaluated. The results show that among various interpolation methods the
3D linear gradient and linear and nonlinear hybrid methods are the best interpolation methods
for temperature and precipitation, respectively. Correlation coefficient analyses showed that
the effective meteorological factors on the growth of Quercus macranthera trees are the
positive effect of the SPI of June and the negative effect of the March temperature. The July
precipitation and the pre-growth September temperature have a negative effect on the growth
of the Juniperus polycarpus trees.

کلیدواژه‌ها [English]

  • Chaharbagh Gorgan Forestry high land region
  • Correlation analysis
  • Dendroclimatology
  • Iinterpolation
  • SPI
  • RDI
[1]. Kotlyakov, V.M., Serebryanny, L.R., and Solomina, O. N. (1991). Climate change and glacier
fluctuation during the last 1000 years in the Southern Mountains of the USSR. Mountain Research
and Development, 11(1): 1-12.
[2]. Touchan, R., Meko, D.M., and Aloui, A. (2008). Precipitation reconstruction for Northwestern
Tunisia from tree rings. Journal of Arid Environments, 72: 1887:1896.
[3]. Watson, E. and Luckman, B.H. (2004). Tree-ring based reconstructions of precipitation for the
southern Canadian cordillera. Climatic Change, 65: 209-241.
[4]. Rozas, V. (2005). Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth
pollarded woodland in northern Spain: establishment patterns and the management history.
Annals of forest science, 62(3): 209-218.
[5]. Touchan, R., Funkhouser, G., Hughes, M., and Erkan, N. (2005). Standardized precipitation
index reconstructed from Turkish Tree-ring widths. Climatic change, 72: 339-353.
[6]. Pourtahmasi, K., Parsapjouh, D., Bräuning, A., Esper, J., and Schweingruber, F.H. (2007).
Climatic analysis of pointer years in tree-ring chronologies from northern Iran and neighbouring
high mountain areas. Geoöko, 28: 27-42.
[7]. Pourtahmasi, K., Poursartip, L., Bräuning, A. and Parsapjouh, D. (2009). Comparison between
the radial growth of juniper (Juniperus polycarpus) and Oak (Quercus macrantera) trees in two
sides of the Alborz Mountains in Chaharbagh region of gorgan. Journal of Forest and Wood
Products, 62(2):159-169.
[8]. Safdari, V. R., Parsapajouh, D., and Hemmasi, A.H. (2005). A dendroclimatological evaluation
of Pinus eldarica at three sites in Tehran. Journal of Agricultural Science, 11(2): 217-231.
[9]. Balapour, Sh., Jalilvand, H., Raeini, M., and Asadpour, H. (2010). Relationship between
tree rings of Beech (Fagus orientalis) with some climatic variables in experimental forest of
Natural Resources Faculty (Darabcola). Watershed Management Research Journal (Pajouhesh &
Sazandegi), 88: 1-10.
[10]. Schweingruber, F.H. (1993). Trees and Wood in Dendrochronology. Springer Series in Wood
Science. Springer Verlag, Heidelbeerg.
[11]. Dirks, K. N., Hay, J. E., Stow, C. D., and Harris, D. (1998). High-resolution studies of rainfall
on Norfolk Island Part II: Interpolation of rainfall data. Journal of Hydrology, 208(3-4): 187-193.
[12]. Rahimi B.A, S. and Mahdian, M.H. (2005).Comparison of estimation methods for spatial
distribution of daily and monthly rainfall in Caspian sea watershed. Pajouhesh & Sazandegi, 69:
63-72.
[13]. Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R. (2001). Using spatial interpolation
to construct a comprehensive archive of Australian climate data. Environmental Modelling and
Software, 16: 309-330.
[14]. Phillips, D.L., Dolph, J., and Marks, D. (1992). A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agricultural and Forest Meteorology, 58:
119 -141.
[15]. Kravchenko, A. Zhang, R. and Tung, Y.K. (1996). Estimation of Mean Annual Precipitation
in Wyoming Using Geostatistical Analysis. In: 16th Annual Hydrology Days. University of
Wyoming. Colorado, USA, pp. 271-282.
[16]. Francisco, J. M. (2010). Comparison of different geostatistical approaches to map climate
variables: application to precipitation. International Journal of Climatology, 30: 620-631.
[17]. Khalili, A. (1996). Three dimensional variations of long-term annual averages of air temperature
at Iran. Nivar, 32: 1-12.
[18]. Price, D.T., McKenney, D.W., Nalder, L.A., Hutchinson, M.F., and Kesteven, J.L. (2000).
A comparison of two statistical methods for spatial interpolation of Canadian monthly mean
climate data. Agricultural and Forest Meteorology, 101: 81-94.
[19]. Boer, E. P. J., Beurs, K.M., and Hartkamp, A. D. (2001). Kriging and thin plate splines for
mapping climate variables. JAG . 3(2): 146-154.
[20]. Hassani Pak, A.A. (2007). Geostatistics, 2th Ed., University of Tehran Press, Tehran.
[21]. Hutchinson, M. F. and Gessler, P. E. (1994). Splines more than just a smooth interpolator.
Geoderma, 62: 45-67.
[22]. McKee, T.B. Doesken, N.J. and Kleist, J. (1993). The Relationship of Drought Frequency and
duration to Time Scales. In: Eighth Conference on Applied Climatology, January.17-22 Boston,
USA, pp. 179-184.
[23]. Paulo, A.A., Ferreira, E. Coelho, C., and Pereira, L.S. (2005). Drought class transition analysis
through Markov and Loglinear models, an approach to early warning. Agricultural Water
Management, 77: 59-81.
[24]. Tsakiris, G., Pangalou, D., and Vangelis, H. (2007). Regional Drought Assessment Based on
the Reconnaissance Drought Index (RDI). Water Resour Manage, 21: 821-833.
[25]. Akhtari, R., Mahdian, M.H., and Morid, S. (2007). Assessment of spatial analysis of SPI and
EDI drought indices in Tehran province. Iran-Water Resources Research, 2(3): 27-38.
[26]. Alijani, B. (1995). Climate of Iran. Piame Noor University, Tehran.