برآورد شاخص‌ تنوع گونه‌ای در جنگل‌های زاگرس با استفاده از داده‌های ماهوارة PRISMA

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه جنگلداری و اقتصاد جنگل، دانشکدة منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج. ایران.

10.22059/jfwp.2025.398023.1354

چکیده

مدیریت مؤثر تنوع زیستی به‌عنوان یکی از عناصر کلیدی در حفظ پویایی و کارایی بوم‌سازگان‌ها، از اهمیت بالایی برخوردار است. در این راستا، استفاده از شاخص‌های تنوع زیستی به‌عنوان ابزارهایی علمی و معتبر برای مطالعه و سنجش این مشخصه، ضروری به‌نظر می‌‌رسد. در پژوهش حاضر، به‌منظور بررسی تنوع گونه‌ای درختی و درختچه‌ای در بخشی از جنگل‌های زاگرس از داده‌های ابرطیفی ماهوارة PRISMA استفاده شد. با هدف توسعة مدل­ها و اعتبارسنجی آنها 79 قطعه‌نمونة زمینی با ابعاد مربعی‌شکل ۴۵×۴۵ متر به روش نمونه‌برداری تصادفی-منظم انتخاب و نوع و تعداد گونه‌ها در هر قطعه‌نمونه برداشت شدند. شاخص تنوع گونه‌ای فیشر-آلفا به‌دلیل استفاده گسترده در مطالعات اکولوژیک، انتخاب و میزان آن در هر قطعه‌نمونه محاسبه شد. تصاویر ماهواره‌ای PRISMA مربوط به خردادماه سال 1403، پس از انجام تصحیح‌های هندسی و رادیومتری، مورد تجزیه‌وتحلیل قرار گرفتند. به‌منظور کاهش نویز و حفظ اطلاعات مفید، از فیلتر ساویتزکی-گولای استفاده شد. همبستگی بین شاخص تنوع گونه‌ای اندازه‌گیری شدة زمینی و باندهای طیفی با استفاده از تحلیل همبستگی پیرسون بررسی شد. مدل‌سازی تنوع گونه‌ای با استفاده از دو روش آماری جنگل تصادفی (RF) و رگرسیون حداقل مربعات جزئی (PLSR) انجام شد. ارزیابی داده‌های اعتبارسنجی نشان داد که هر دو مدل PLSR با 0/54 =R2، 6/15 =rRMSE و RF با 0/53 =R2 ، 6/86 =rRMSE عملکرد تقریباً یکسانی در برآورد شاخص تنوع گونه‌ای فیشر-آلفا داشتند و تفاوت بین آنها از نظر آماری معنی‌دار نیست. نتایج این مطالعه نشان‌  داد که تصاویر ابرطیفی ماهوارة PRISMA ابزاری نوید‌بخش برای برآورد تنوع گونه‌ای جنگل‌های زاگرس هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Species diversity mapping in Zagros forests using PRISMA

نویسندگان [English]

  • Farshid Sotoreh Bavani
  • Parviz Fatehi
  • Vahid Etemad
  • Naseh Miri
Department of Forestry and Forest Economics, Faculty of Natural Resources, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Effective biodiversity management is a critical component of maintaining ecosystem dynamics and functionality. In this context, the use of biodiversity indicators as reliable tools for assessment and monitoring is essential. This study evaluates tree and shrub species diversity in the Zagros forests using PRISMA hyperspectral satellite data. Seventy-nine field sample plots, each 45 m × 45 m, were selected through a systematic random sampling approach. Species composition and abundance were recorded in each plot, and Fisher’s alpha diversity index was calculated. PRISMA satellite images acquired in June 2024 were downloaded, followed by geometric and radiometric corrections prior to analysis. A Savitzky–Golay filter was applied to reduce noise while preserving spectral information. Pearson correlation analysis was conducted to examine the relationship between field-measured species diversity and spectral reflectance. Species diversity modeling was carried out using two statistical methods: Random Forest (RF) and Partial Least Squares Regression (PLSR). Validation results showed that both models performed similarly; however, the PLSR model (R² = 0.54, rRMSE = 6.15) slightly outperformed the RF model (R² = 0.53, rRMSE = 6.88) in estimating Fisher’s alpha diversity. These findings highlight the importance of selecting appropriate modeling approaches in ecological studies and demonstrate that PRISMA hyperspectral imagery is a valuable resource for estimating species diversity in the Zagros forests.

کلیدواژه‌ها [English]

  • Partial least squares regression
  • PRISMA satellite
  • Random forest
  • Species diversity
  • Zagros forests
[1] Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H.M., Chan, K.M.A., Garibaldi, L.A., Ichii, K., Liu, J., Subramanian, S.M., Midgley, G.F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Chowdhury, R.R., Shin, Y.J., Visseren-Hamakers, I., Willis, K.J.,  & Zayas, C.N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471), eaax3100.
 [2] Scherer-Lorenzen, M., Potvin, C., Koricheva, J., Schmid, B., Hector, A., Bornik, Z., Reynolds, G., & Schulze, E. D. (2005). The design of experimental tree plantations for functional biodiversity research. In Forest Diversity and Function: Temperate and Boreal Systems (pp. 347-376). Berlin, Heidelberg: Springer Berlin Heidelberg.‏
[3] Kuuluvainen, T., Lindberg, H., Vanha-Majamaa, I., Keto-Tokoi, P. & Punttila, P. (2019). Low-level retention forestry, certification, and biodiversity: case Finland. Ecological Processes, 8(1), 1-13.‏
[4] Brander, L. M., de Groot, R., Schägner, J. P., Guisado-Goñi, V., van‘t Hoff, V. & Solomonides, S. (2023). The role of forest ecosystem services to support the green recovery.‏ FAO Forestry Working Paper No. 38.
[5] Ghaisaryan, A., Fatehi, P. & Etemad, V. (2023). Estimation of species diversity indices in Hyrcanian forests using Sentinel-2 satellite data]. Journal of Forest and Wood Products, 76(3), 229-243. (In Persian)
[6] McNeely, J. A. (1989). Conserving the world’s biological diversity.
[7] Lu, S., Zhang, D., Wang, L., Dong, L., Liu, C., Hou, D., Chen, G., Qiao, X., Wang, Y. & Guo, K. (2023). Comparison of plant diversity-carbon storage relationships along altitudinal gradients in temperate forests and shrublands. Frontiers in Plant Science, 14, 1120050.
[8] Repo, A., Albrich, K., Jantunen, A., Aalto, J., Lehtonen, I. & Honkaniemi, J. (2024). Contrasting forest management strategies: Impacts on biodiversity and ecosystem services under changing climate and disturbance regimes. Journal of Environmental Management, 371, 123124.‏
[9] Flombaum, P. & Sala, O. E. (2008). Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences, 105(16), 6087-6090.
[10] Mallick, P. H. & Chakraborty, S. K. (2018). Forest, wetland and biodiversity: Revealing multi-faceted ecological services from ecorestoration of a degraded tropical landscape. Ecohydrology & Hydrobiology, 18(3), 278-296.‏
[11] Rocchini, D., Boyd, D.S., Féret, J.B., Foody, G.M., He, K.S., Lausch, A., Nagendra, H., Wegmann, M. & Pettorelli, N. (2016). Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sensing in Ecology and Conservation, 2(1), 25-36.
[12] Mallinis, G., Chrysafis, I., Korakis, G., Pana, E. & Kyriazopoulos, A.P. (2020). A random forest modelling procedure for a multi-sensor assessment of tree species diversity. Remote Sensing, 12(7), 1210.‏
[13] Tagliabue, G., Panigada, C., Celesti, M., Cogliati, S., Colombo, R., Migliavacca, M. & Rossini, M. (2020). Sun–induced fluorescence heterogeneity as a measure of functional diversity. Remote Sensing of Environment, 247, 111934.‏
[14] Miri, N., Fatehi, D.S., Darvishsefat, A.A., Pirbavaghar, H., Homolva, H. & Lutzieh, M. (2024). Modeling leaf area index in Zagros forests using Sentinel-2 imagery and Gaussian process regression. Iranian Journal of Forest and Poplar Research, 31(4), 323-337. (In Persian)
[15] Bai, J., Ren, C., Shi, X., Xiang, H., Zhang, W., Jiang, H. & Mao, D. (2024). Tree species diversity impacts on ecosystem services of temperate forests. Ecological Indicators, 167, 112639.‏
[16] Khare, S., Latifi, H. & Rossi, S. (2019). Forest beta-diversity analysis by remote sensing: How scale and sensors affect the Rao’s Q index. Ecological Indicators, 106, 105520.‏
[17] Lechner, A. M., Foody, G.M. & Boyd, D.S. (2020). Applications in remote sensing to forest ecology and management. One Earth, 2(5), 405-412.‏
[18] Ming, L., Liu, J., Quan, Y., Li, M., Wang, B. & Wei, G. (2024). Mapping tree species diversity in a typical natural secondary forest by combining multispectral and LiDAR data. Ecological Indicators, 159, 111711.‏
[19] Torresani, M., Rossi, C., Perrone, M., Hauser, L.T., Feret, J.-B., Moudrý, V., Simova, P., Ricotta, C., Foody, G.M., Kacic, P., Feilhauer, H., Malavasi, M., Tognetti, R. & Rocchini, D. (2024). Reviewing the spectral variation hypothesis: Twenty years in the tumultuous sea of biodiversity estimation by remote sensing. Ecological Informatics, 82, 1–49.
[20] Silveira, E. M. O., Pidgeon, A.M., Persche, M. & Radeloff, V.C. (2024). Remotely-sensed phenoclusters of Wisconsin’s forests, shrublands, and grasslands for biodiversity applications. Forest Ecology and Management, 561, 121878.‏
[21] Ozkan, U.Y., Ozdemir, I., Saglam, S., Yesil, A. & Demirel, T. (2016). Evaluating the woody species diversity by means of remotely sensed spectral and texture measures in the urban forests. Journal of the Indian Society of Remote Sensing, 44(5), 687-697.‏
[22] Arekhi, M., Yılmaz, O. Y., Yılmaz, H. & Akyüz, Y.F. (2017). Can tree species diversity be assessed with Landsat data in a temperate forest?. Environmental Monitoring and Assessment, 189(11), 586.‏
[23] Mallinis, G., Chrysafis, I., Korakis, G., Pana, E. & Kyriazopoulos, A. P. (2020). A random forest modelling procedure for a multi-sensor assessment of tree species diversity. Remote Sensing, 12(7), 1210.
[24] Akbari, H. & Kalbi, S. (2019). Modeling tree species diversity in circular forest stands using GeoEye imagery (Case study: Circular forest stands of Sari). Journal of Wood Science and Technology Research, 26(2), 51-62. (In Persian)
[25] Abbas, S., Peng, Q., Wong, M.S., Li, Z., Wang, J., Ng, K.T.K., & Hui, K.K.W. (2021). Characterizing and classifying urban tree species using bi-monthly terrestrial hyperspectral images in Hong Kong. ISPRS Journal of Photogrammetry and Remote Sensing, 177, 204-216.‏
[26] Cheng, S., Yang, X., Yang, G., Chen, B., Chen, D., Wang, J. & Sun, W. (2024). Using ZY1-02D satellite hyperspectral remote sensing to monitor landscape diversity and its spatial scaling change in the Yellow River Estuary. International Journal of Applied Earth Observation and Geoinformation, 128, 103716.‏
[27] Wang, R., Gamon, J.A. & Cavender-Bares, J. (2022). Seasonal patterns of spectral diversity at leaf and canopy scales in the Cedar Creek prairie biodiversity experiment. Remote Sensing of Environment, 280, 113169.‏
[28] Moravi Mahajer, M.R. (2011). Forest Ecology and Silviculture (3rd ed.). University of Tehran Press. 417 p. (In Persian)
[29] Jazirei, M.H. & Ebrahimi Rastaqi, M. (2013). Zagros Forest Ecology (2nd ed.). University of Tehran Press. 560 p. (In Persian)
[30] Saedmocheshi, A., Pirbavaghar, M., Shabanian, N. & Fatehi, P. (2019). Possibility of estimating woody species diversity using optical images of Sentinel satellite (Case study: Marivan forests). Journal of Forest and Wood Products, 72(2), 101-110. (In Persian)
[31] Nazarian, N. & Fallah, A. (2022). Comparison of biodiversity indices using Sentinel-2 images in Zagros forests. In Proceedings of the Third National Conference on Natural Resources and Sustainable Development in Zagros (pp. [page numbers]). Shahrekord University, Shahrekord, Iran. (In Persian)
[32] Ahmadi, S., Fatehi, P., Namiranian, M. & Mirri, N. (2024). Estimation of oak forest canopy cover using Landsat 9 satellite data in northern Zagros forests. Iranian Journal of Forest, 16(4), 471-488. (In Persian)
[33] Fisher, R.A., Corbet, A.S. & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. The Journal of Animal Ecology, 42-58.‏
[34] Loizzo, R., Daraio, M., Guarini, R., Longo, F., Lorusso, R., Dini, L. & Lopinto, E. (2019). PRISMA mission status and perspective. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 4503-4506). IEEE.
[35] Rast, M. (2019). PRISMA (Hyperspectral). In Satellite Missions Catalogue. European Space Agency. Retrieved from https://www.eoportal.org/satellite-missions/PRISMA-hyperspectral
[36] ASI. (2020). PRISMA (PRecursore IperSpettrale della Missione Applicativa). Italian Space Agency. Retrieved from https://www.eoportal.org/satellite-missions/PRISMA-hyperspectral
[37] Candela, L., Formaro, R., Guarini, R., Loizzo, R., Longo, F., and Varacalli, G. (2016, July). The PRISMA mission. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 253-256). IEEE.‏
[38] Beitollahi, M., and Hosseini, S. A. (2018, May). Using savitsky-golay smoothing filter in hyperspectral data compression by curve fitting. In electrical engineering (ICEE), Iranian conference on (pp. 452-457). IEEE.‏
[39] Candes, E.J. & Donoho, D.L. (2005). Continuous curvelet transform: I. Resolution of the wavefront set. Applied and Computational Harmonic Analysis, 19(2), 162-197.
[40] Člupek, M., Matějka, P., and Volka, K. (2007). Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 38(9), 1174-1179.
[41] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.‏
[42] Santini, F. & Palombo, A. (2022). Impact of Topographic Correction on PRISMA Sentinel 2 and Landsat 8 Images. Remote Sensing, 14(16), 3903.
[43] Chai, T. & Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250.‏
[44] Xi, Y., Zhang, W., Brandt, M., Tian, Q. & Fensholt, R. (2023). Mapping tree species diversity of temperate forests using multi-temporal Sentinel-1 and-2 imagery. Science of Remote Sensing, 8, 100094.‏