[1] Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H.M., Chan, K.M.A., Garibaldi, L.A., Ichii, K., Liu, J., Subramanian, S.M., Midgley, G.F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Chowdhury, R.R., Shin, Y.J., Visseren-Hamakers, I., Willis, K.J., & Zayas, C.N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471), eaax3100.
[2] Scherer-Lorenzen, M., Potvin, C., Koricheva, J., Schmid, B., Hector, A., Bornik, Z., Reynolds, G., & Schulze, E. D. (2005). The design of experimental tree plantations for functional biodiversity research. In Forest Diversity and Function: Temperate and Boreal Systems (pp. 347-376). Berlin, Heidelberg: Springer Berlin Heidelberg.
[3] Kuuluvainen, T., Lindberg, H., Vanha-Majamaa, I., Keto-Tokoi, P. & Punttila, P. (2019). Low-level retention forestry, certification, and biodiversity: case Finland. Ecological Processes, 8(1), 1-13.
[4] Brander, L. M., de Groot, R., Schägner, J. P., Guisado-Goñi, V., van‘t Hoff, V. & Solomonides, S. (2023). The role of forest ecosystem services to support the green recovery. FAO Forestry Working Paper No. 38.
[5] Ghaisaryan, A., Fatehi, P. & Etemad, V. (2023). Estimation of species diversity indices in Hyrcanian forests using Sentinel-2 satellite data]. Journal of Forest and Wood Products, 76(3), 229-243. (In Persian)
[6] McNeely, J. A. (1989). Conserving the world’s biological diversity.
[7] Lu, S., Zhang, D., Wang, L., Dong, L., Liu, C., Hou, D., Chen, G., Qiao, X., Wang, Y. & Guo, K. (2023). Comparison of plant diversity-carbon storage relationships along altitudinal gradients in temperate forests and shrublands. Frontiers in Plant Science, 14, 1120050.
[8] Repo, A., Albrich, K., Jantunen, A., Aalto, J., Lehtonen, I. & Honkaniemi, J. (2024). Contrasting forest management strategies: Impacts on biodiversity and ecosystem services under changing climate and disturbance regimes. Journal of Environmental Management, 371, 123124.
[9] Flombaum, P. & Sala, O. E. (2008). Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences, 105(16), 6087-6090.
[10] Mallick, P. H. & Chakraborty, S. K. (2018). Forest, wetland and biodiversity: Revealing multi-faceted ecological services from ecorestoration of a degraded tropical landscape. Ecohydrology & Hydrobiology, 18(3), 278-296.
[11] Rocchini, D., Boyd, D.S., Féret, J.B., Foody, G.M., He, K.S., Lausch, A., Nagendra, H., Wegmann, M. & Pettorelli, N. (2016). Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sensing in Ecology and Conservation, 2(1), 25-36.
[12] Mallinis, G., Chrysafis, I., Korakis, G., Pana, E. & Kyriazopoulos, A.P. (2020). A random forest modelling procedure for a multi-sensor assessment of tree species diversity. Remote Sensing, 12(7), 1210.
[13] Tagliabue, G., Panigada, C., Celesti, M., Cogliati, S., Colombo, R., Migliavacca, M. & Rossini, M. (2020). Sun–induced fluorescence heterogeneity as a measure of functional diversity. Remote Sensing of Environment, 247, 111934.
[14] Miri, N., Fatehi, D.S., Darvishsefat, A.A., Pirbavaghar, H., Homolva, H. & Lutzieh, M. (2024). Modeling leaf area index in Zagros forests using Sentinel-2 imagery and Gaussian process regression. Iranian Journal of Forest and Poplar Research, 31(4), 323-337. (In Persian)
[15] Bai, J., Ren, C., Shi, X., Xiang, H., Zhang, W., Jiang, H. & Mao, D. (2024). Tree species diversity impacts on ecosystem services of temperate forests. Ecological Indicators, 167, 112639.
[16] Khare, S., Latifi, H. & Rossi, S. (2019). Forest beta-diversity analysis by remote sensing: How scale and sensors affect the Rao’s Q index. Ecological Indicators, 106, 105520.
[17] Lechner, A. M., Foody, G.M. & Boyd, D.S. (2020). Applications in remote sensing to forest ecology and management. One Earth, 2(5), 405-412.
[18] Ming, L., Liu, J., Quan, Y., Li, M., Wang, B. & Wei, G. (2024). Mapping tree species diversity in a typical natural secondary forest by combining multispectral and LiDAR data. Ecological Indicators, 159, 111711.
[19] Torresani, M., Rossi, C., Perrone, M., Hauser, L.T., Feret, J.-B., Moudrý, V., Simova, P., Ricotta, C., Foody, G.M., Kacic, P., Feilhauer, H., Malavasi, M., Tognetti, R. & Rocchini, D. (2024). Reviewing the spectral variation hypothesis: Twenty years in the tumultuous sea of biodiversity estimation by remote sensing. Ecological Informatics, 82, 1–49.
[20] Silveira, E. M. O., Pidgeon, A.M., Persche, M. & Radeloff, V.C. (2024). Remotely-sensed phenoclusters of Wisconsin’s forests, shrublands, and grasslands for biodiversity applications. Forest Ecology and Management, 561, 121878.
[21] Ozkan, U.Y., Ozdemir, I., Saglam, S., Yesil, A. & Demirel, T. (2016). Evaluating the woody species diversity by means of remotely sensed spectral and texture measures in the urban forests. Journal of the Indian Society of Remote Sensing, 44(5), 687-697.
[22] Arekhi, M., Yılmaz, O. Y., Yılmaz, H. & Akyüz, Y.F. (2017). Can tree species diversity be assessed with Landsat data in a temperate forest?. Environmental Monitoring and Assessment, 189(11), 586.
[23] Mallinis, G., Chrysafis, I., Korakis, G., Pana, E. & Kyriazopoulos, A. P. (2020). A random forest modelling procedure for a multi-sensor assessment of tree species diversity. Remote Sensing, 12(7), 1210.
[24] Akbari, H. & Kalbi, S. (2019). Modeling tree species diversity in circular forest stands using GeoEye imagery (Case study: Circular forest stands of Sari). Journal of Wood Science and Technology Research, 26(2), 51-62. (In Persian)
[25] Abbas, S., Peng, Q., Wong, M.S., Li, Z., Wang, J., Ng, K.T.K., & Hui, K.K.W. (2021). Characterizing and classifying urban tree species using bi-monthly terrestrial hyperspectral images in Hong Kong. ISPRS Journal of Photogrammetry and Remote Sensing, 177, 204-216.
[26] Cheng, S., Yang, X., Yang, G., Chen, B., Chen, D., Wang, J. & Sun, W. (2024). Using ZY1-02D satellite hyperspectral remote sensing to monitor landscape diversity and its spatial scaling change in the Yellow River Estuary. International Journal of Applied Earth Observation and Geoinformation, 128, 103716.
[27] Wang, R., Gamon, J.A. & Cavender-Bares, J. (2022). Seasonal patterns of spectral diversity at leaf and canopy scales in the Cedar Creek prairie biodiversity experiment. Remote Sensing of Environment, 280, 113169.
[28] Moravi Mahajer, M.R. (2011). Forest Ecology and Silviculture (3rd ed.). University of Tehran Press. 417 p. (In Persian)
[29] Jazirei, M.H. & Ebrahimi Rastaqi, M. (2013). Zagros Forest Ecology (2nd ed.). University of Tehran Press. 560 p. (In Persian)
[30] Saedmocheshi, A., Pirbavaghar, M., Shabanian, N. & Fatehi, P. (2019). Possibility of estimating woody species diversity using optical images of Sentinel satellite (Case study: Marivan forests). Journal of Forest and Wood Products, 72(2), 101-110. (In Persian)
[31] Nazarian, N. & Fallah, A. (2022). Comparison of biodiversity indices using Sentinel-2 images in Zagros forests. In Proceedings of the Third National Conference on Natural Resources and Sustainable Development in Zagros (pp. [page numbers]). Shahrekord University, Shahrekord, Iran. (In Persian)
[32] Ahmadi, S., Fatehi, P., Namiranian, M. & Mirri, N. (2024). Estimation of oak forest canopy cover using Landsat 9 satellite data in northern Zagros forests. Iranian Journal of Forest, 16(4), 471-488. (In Persian)
[33] Fisher, R.A., Corbet, A.S. & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. The Journal of Animal Ecology, 42-58.
[34] Loizzo, R., Daraio, M., Guarini, R., Longo, F., Lorusso, R., Dini, L. & Lopinto, E. (2019). PRISMA mission status and perspective. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 4503-4506). IEEE.
[35] Rast, M. (2019). PRISMA (Hyperspectral). In Satellite Missions Catalogue. European Space Agency. Retrieved from https://www.eoportal.org/satellite-missions/PRISMA-hyperspectral
[36] ASI. (2020). PRISMA (PRecursore IperSpettrale della Missione Applicativa). Italian Space Agency. Retrieved from https://www.eoportal.org/satellite-missions/PRISMA-hyperspectral
[37] Candela, L., Formaro, R., Guarini, R., Loizzo, R., Longo, F., and Varacalli, G. (2016, July). The PRISMA mission. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 253-256). IEEE.
[38] Beitollahi, M., and Hosseini, S. A. (2018, May). Using savitsky-golay smoothing filter in hyperspectral data compression by curve fitting. In electrical engineering (ICEE), Iranian conference on (pp. 452-457). IEEE.
[39] Candes, E.J. & Donoho, D.L. (2005). Continuous curvelet transform: I. Resolution of the wavefront set. Applied and Computational Harmonic Analysis, 19(2), 162-197.
[40] Člupek, M., Matějka, P., and Volka, K. (2007). Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 38(9), 1174-1179.
[41] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
[42] Santini, F. & Palombo, A. (2022). Impact of Topographic Correction on PRISMA Sentinel 2 and Landsat 8 Images. Remote Sensing, 14(16), 3903.
[43] Chai, T. & Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250.
[44] Xi, Y., Zhang, W., Brandt, M., Tian, Q. & Fensholt, R. (2023). Mapping tree species diversity of temperate forests using multi-temporal Sentinel-1 and-2 imagery. Science of Remote Sensing, 8, 100094.