تحلیل الگوهای مکانی ویژگی‌های خاک در جنگل‌های بلوط زاگرس با استفاده از مدل‌های زمین‌آماری و کریجینگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم جنگل، دانشکدة کشاورزی، دانشگاه ایلام، ایلام، ایران.

2 گروه آب و خاک، دانشکدة کشاورزی، دانشگاه ایلام، ایلام، ایران.

10.22059/jfwp.2025.393126.1345

چکیده

ناهمگنی خاک و وضعیت کوهستانی جنگل­ های زاگرس، تحلیل این جنگل‌ها را به روش‌های دقیق‌تر و پیشرفته‌تری نیازمند کرده است. بر این اساس، هدف این پژوهش، مدل‌سازی و تحلیل الگوی پراکنش مکانی خصوصیات خاک با بهره‌گیری از روش‌های کریجینگ در محیط سامانة اطلاعات جغرافیایی (GIS) در جنگل‌های مانشت و قلارنگ (واقع در شمال شرقی ایلام) بود. نمونه‌برداری از دو فرم رویشی دانه‌زاد و شاخه‌زاد و دو نوع تاج‌پوشش جنگلی تنک و متراکم و در عمق ۰ تا ۲۰ سانتی‌متری خاک صورت گرفت. مدل‌سازی مکانی داده‌ها با روش‌های کریجینگ (عام، معمولی و ساده) انجام و مدل بهینة واریوگرام با نرم‌افزار GS+ تعیین شد. دقت مدل‌ها با خطای جذر میانگین مربعات (RMSE) ارزیابی شد. بیشترین میزان وزن مخصوص ظاهری (1/61) در دانه­ زاد با تاج تنک، بیشترین میزان هدایت الکتریکی (26/0) در دانه­زاد با تاج متراکم و کمترین میزان رطوبت (44/69) نیز در دانه ­زاد با تاج تنک مشاهده شد. بیشترین مقدار مادة آلی در تودة دانه‌زاد با تاج متراکم (7/16) و کمترین میزان آن در تودة شاخه‌زاد با تاج تنک (6/84) اندازه‌گیری شد. نتایج واریوگرام‌های برازش شده نشان داد که بیشتر ویژگی­ های خاک با مدل کروی و رس و مادة آلی با مدل نمایی انطباق بیشتری داشتند. ارزیابی دقت مدل‌ها نیز نشان داد که کریجینگ معمولی برای اکثر ویژگی­ های خاک، کمترین RMSE  را دارد. در مقابل، کریجینگ ساده با کمترین RMSE برای رس (0/98) و مادة آلی (0/99) دقیق ­تر بود. این پژوهش تأثیر متفاوت نوع تودة جنگلی و تاج‌پوشش بر خصوصیات خاک را تأیید کرد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of soil property spatial patterns in Zagros oak forests using geostatistical and kriging models

نویسندگان [English]

  • Mohammad Abbasi 1
  • Jaafar Hosseinzadeh 1
  • Mehdi Heydari 1
  • Masoud Bazgir 2
  • Nargess Pordel 1
1 Department of Forest Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
2 Department of Water and Soil, Faculty of Agriculture, Ilam University, Ilam, Iran.
چکیده [English]

Soil property assessment is vital for sustainable forest management, especially in the heterogeneous and mountainous Zagros forests. This study aimed to model and analyze the spatial distribution of soil properties using kriging methods within a Geographic Information System (GIS) environment. The research was conducted in the Manesht and Ghalarange forests in northeastern Ilam. Soil samples (0–20 cm depth) were collected across two forest types (seedling and coppice) and two canopy covers (open and dense). Spatial modeling was carried out using ordinary, simple, and universal kriging, and the best variogram models were selected using GS+ software. Model accuracy was evaluated using root mean square error (RMSE). Results showed that the highest bulk density (1.61) and lowest moisture (44.69%) occurred in seedling stands with open canopy, while the highest electrical conductivity (0.26) and organic matter (7.16) were in seedling stands with dense canopy. Most soil properties followed a spherical variogram model, while clay and organic matter fit better with an exponential model. Ordinary kriging provided the lowest RMSE for most variables, including sand, silt, pH, EC, bulk density, and moisture. In contrast, simple kriging was more accurate for clay (0.98) and organic matter (0.99). The study confirms the significant effects of forest type and canopy cover on soil properties and highlights the value of kriging-based interpolation for producing detailed soil maps. These findings support informed decision-making for resource management and sustainable forest planning in the Zagros region.

کلیدواژه‌ها [English]

  • Interpolation
  • Modeling
  • Soil
  • Variogram
[1] Alavipanah, S. K., Matinfar, H. R., & Rafiei Emam, A. (2008). The application of information technology in earth sciences (digital soil mapping): radar, hyperspectral and multispectral remote sensing, geographic information systems (GIS), neural networks, fuzzy sets, and geostatistics. University of Tehran Press, (1st ed., p. 457). (In Persian)
[2] Ali, D., Hussain, A., Begum, F., Lin, C., Ahsan, W. A., & Hussain, A. (2025). Assessing the impact of land use and land cover changes on soil properties and carbon sequestration in the upper Himalayan Region of Gilgit, Pakistan. Sustainable Chemistry One World. https://doi.org/10.1016/j.scowo.2024.100038
[3] Bandari, A. & Khosravipour, B. (2023). The impact of rural poverty on the degradation of the Zagros forests. Geography and Human Relations, 6(1), 116-139.
[4] Basche, A. & DeLonge, M. (2017). The impact of continuous living cover on soil hydrologic properties: A meta-analysis. Soil Science Society of America Journal, 81(5), 1179-1190.
[5] Bazgir, M., Heydari, M., Omidipour, R. & Prevosto, B. (2021). The influence of growth types on soil properties along an elevation gradient in a semi-arid oak forest. Acta Oecologica, 112, 103773.
[6] Benslama, A., Lucas, I.G., Vidal, M.J.J., Almendro-Candel, M.B. & Navarro-Pedreño, J. (2024). Carbon and nitrogen stocks in topsoil under different land use/land cover types in the Southeast of Spain. AgriEngineering, 6(1), 24.
[7] Bogunovic, I., Pereira, P. & Sraka, M. (2017). Spatial variation of soil properties and sampling strategies in agricultural land. Geoderma, 289, 29-39.
[8] Chen, X., Wang, Y. & Liu, H. (2022). Spatial interpolation techniques for assessing soil properties in forest ecosystems. Forest Ecology and Management, 506, 120435.
[9] Cortez, J. (1998). Field decomposition of leaf litters: relationships between decomposition rates and soil moisture, soil temperature and earthworm activity. Soil Biology and Biochemistry, 30(6), 783-793.
[10] Corwin, D.L., Lesch, S.M. & Hopmans, J.W. (2020). Assessment of the spatial variability of soil properties using geostatistical methods. Agricultural Water Management, 231, 105986.
[11] Cui, H., Stein, A. & Myers, D. (1995). Extension of spatial information, Bayesian kriging and updating of prior variogram parameters. Environmetrics, 6(4), 373-384.
[12] Deljouei, A., Sadeghi, S.M.M., Abdi, E., Bernhardt-Römermann, M., Pascoe, E. & Marcantonio, M. (2018). The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian Forest. European Journal of Forest Research, 137(5), 759-770.
[13] Eslaminejad, P., Heydari, M., Kakhki, F. V., Mirab-Balou, M., Omidipour, R., Muñoz-Rojas, M. & Lucas-Borja, M.E. (2020). Plant species and season influence soil physicochemical properties and microbial function in a semi-arid woodland ecosystem. Plant and Soil, 456, 43-59.
[14] Fathizad, H., Karimi, H. & Taze, M. (2015). Study of different geostatistical algorithms for annual rainfall zoning in Ilam Province. Journal of Applied Research in Geographical Sciences, 14(35), 139-154. (In Persian)
[15] Gheitury, M., Heshmati, M., Noroozi, A., Ahmadi, M. & Parvizi, Y. (2020). Monitoring mortality in a semiarid forest under the influence of prolonged drought in Zagros region. International Journal of Environmental Science and Technology, 17(12), 4589-4600.
[16] Ghorbani, K., Salarjazi, M. & Farnia, E. (2018). Evaluation of the Empirical Bayesian Kriging method in groundwater level zoning. Journal of Water and Soil Conservation, 25(1), 165-182. (In Persian)
[17] Gómez, C., Jang, K. & Park, S. (2022). Assessing the Kriging interpolation method for soil moisture mapping. Geoderma, 418, 115806.
[18] Guo, B., Yang, F., Wu, H., et al. (2021). How the variations of terrain factors affect the optimal interpolation methods for multiple types of climatic elements. Earth Science Informatics, 14, 1021-1032. https://doi.org/10.1007/s12145-021-00609-2
[19] Hasanipak, A. (2007). Geostatistics. Tehran, University of Tehran Press. pp. 380.
[20] Heydari, M., Cheraghi, J., Omidipour, R., Rostaminia, M., Kooch, Y., Valkó, O. & Carcaillet, C. (2023). Tree dieback, woody plant diversity, and ecosystem driven by topography in semi-arid mountain forests: Implication for ecosystem management. Journal of Environmental Management, 339, 117892.
[21] Holišová, P., Pietras, J., Darenová, E., Novosadová, K. & Pokorný, R. (2016). Comparison of assimilation parameters of coppiced and non-coppiced sessile oaks. iForest - Biogeosciences and Forestry, 9, 553–559.
[22] Huang, L., Zhao, P. & Wang, R. (2023). Variogram modeling and kriging interpolation for soil characteristics in forested landscapes. Geoderma, 432, 117214.
[23] Jafari Haghighi, M. (2003). Methods of Soil Analysis: Sampling and Important Physical and Chemical Analyses with Emphasis on Theoretical and Practical Principles. Nedaye Zoha Publications, 236 p. (In Persian)
[24] Jiang, Y., Chen, Y. & Wang, X. (2019). Spatial variation of soil properties and their effects on crop yield. Soil & Tillage Research, 186, 10-19.
[25] Kazemi, S. & Hosseinzadeh, M. (2020). High diversity and endemism of herpetofauna in the Zagros Mountains. ECOPERSIA, 8(4), 221–229. Retrieved from http://ecopersia.modares.ac.ir/article-24-38921-en.html
[26] Khan, M., Almazah, M.M.A., Elahi, A., Niaz, R., Al-Rezami, A.Y. & Zaman, B. (2023). Spatial interpolation of water quality index based on Ordinary Kriging and Universal Kriging. Geomatics, Natural Hazards and Risk, 14(1), 2190853.
[27] Khezani, M.-A., Ali-janpour, A., Moatamedi, J. & Shiday Karkaj, I. (2022). The effect of tree canopy cover on understory rangeland species composition: A case study in the Nezhderah reserve, Urmia, West Azerbaijan. Iranian Journal of Plant Research, 35(2), 274-292.
[28] Kokila, A., Nagarajaiah, C., Hanumanthappa, D.C., Shivanna, B., Sathish, K. & Mahadevamurthy, M. (2024). Effect of tree canopy cover on soil moisture dynamics in different agroforestry systems under semi-arid condition. International Journal of Environment and Climate Change.
[29] Kumar, S., Das, S. & Sheelam, S. (2014). Application of CFD and the Kriging method for optimizing the performance of a generic scramjet combustor. Acta Astronautica, 101, 111-119.
[30] Laun, S., Rösch, N., Breunig, M. & Doori, M. A. (2016). Implementation of kriging methods in mobile GIS to estimate damage to buildings in crisis scenarios. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 211-216.
[31] Li, J. & Heap, A.D. (2016). A review of spatial interpolation methods for environmental scientists. Geoscience Frontiers, 7(1), 33-45.
[32] Liu, T., Zhou, H. & Zhang, F. (2022). Spatial distribution of soil organic carbon and its influencing factors in forest ecosystems. Geoderma, 415, 116045.
[33] Mahmoodi, M. A., Mirzaie, M. & Hosseini, S.M.T. (2018). Prediction of soil organic matter spatial distribution using topographic indicators and artificial neural network-kriging technique. Journal of Water and Soil, 32(2), 313-325.
[34] Maleki, S., Minasny, B. & McBratney, A.B. (2018). Effect of variogram uncertainty on spatial prediction estimates in geostatistics. Geoderma, 319, 174-186.
[35] Montes, L., Rubio, J.L. & López, M.V. (2018). Spatial variability of soil properties using semivariogram models. Catena, 171, 259-270.
[36] Nguyen, H.T., Pham, Q.T. & Tran, D.T. (2021). Developing a geostatistical approach for optimal selection of Kriging parameters in soil property mapping. Soil Science Society of America Journal, 85(2), 345-359.
[37] Oliver, M. & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA, 113, 56-69.
[38] Paul, O.O., Sekhon, B.S. & Sharma, S. (2019). Spatial variability and simulation of soil organic carbon under different land use systems: geostatistical approach. Agroforestry Systems, 93(4), 1389-1398.
[39] Pramanik, S., Biswas, S. & Dutta, S. (2023). Utilization of remote sensing and GIS in assessing soil properties. Geoderma, 428, 116763.
[40] Premsudha, R., Kumar, K.D., Prasath, B.H., Sivabalan, M. & Prasath, N. (2024). Data Management System - Water Supply and Channeling with GIS Mapping. International Journal of Advanced Research in Science, Communication and Technology, 4(3), 101-105.
[41] Rahman, M.A., Khan, S. & Lee, C. H. (2023). Application of kriging methods for soil moisture estimation in forested areas. Environmental Research, 221, 115923.
[42] Rebholz, B. & Almekkawy, M. (2020). Efficacy of Kriging interpolation in ultrasound imaging: Subsample displacement estimation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2020, 2137-2141.
[43] Rooney, E. C., Bailey, V., Patel, K. F., Kholodov, A., Golightly, H., & Lybrand, R. (2023). Topography and canopy cover influence soil organic carbon composition and distribution across a forested hillslope in the discontinuous permafrost zone. Permafrost and Periglacial Processes, 34, 331-358.
[44] Ruiz, S. A., Bickel, S. & Or, D. (2021). Global earthworm distribution and activity windows based on soil hydromechanical constraints. Communications Biology, 4(1), 612.
[45] Salehi, A. (2019). Phytoremediation: A technology for cleaning heavy metal-contaminated soils. Human and Environment, 17(2), 27-42.
[46] Shabani, A., Matinfar, H. R., Arekhi, S., & Rahimi Harabadi, S. (2011). Modeling rainfall erosivity factor using geostatistic techniques (Case study: Ilam Dam watershed). Journal of RS and GIS for Natural Resources, 2(2), 56-65. (Translated in Persian)
[47] Smith, J., & Jones, B. (2023). Soil physical and chemical properties in sustainable forest management. Forest Ecology and Management, 515, 120215. https://doi.org/10.1016/j.foreco.2023.120215
[48] Song, Y., Wang, X., Wright, G., Thatcher, D., Wu, P. & Felix, P. (2019). Traffic volume prediction with segment-based regression Kriging and its implementation in assessing the impact of heavy vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(1), 232–243.
[49] Stateczny, A. & Włodarczyk-Sielicka, M. (2012). Test results of bathymetric data processing obtained by swath sounder GS+. Zeszyty Naukowe Akademii Marynarki Wojennej, 53(4), 105-118.
[50] Sun, D., Yang, H., Guan, D., Yang, M., Wu, J., Yuan, F. & Zhang, Y. (2018). The effects of land use change on soil infiltration capacity in China: A meta-analysis. Science of the Total Environment, 626, 1394-1401.
[51] Tsogbadrakh, O., Sukhbaatar, G., Ganbaatar, B., Batchuluun, B., Altanjin, D., Kim, K.W., Seah, K.Y., & Oyuntsetseg, B. (2024). Tree canopy area-dependent changes in soil properties: a comparative study in the southern limit of boreal forest distribution. Forest Science and Technology, 20, 58-66.
[52] Wang, L., Zhang, T. & Zhao, X. (2021). Importance of soil properties in maintaining forest ecosystem stability. Environmental Monitoring and Assessment, 193(7), 92-108.
[53] Wang, Z., Wang, G., Li, Y. & Zhang, Z. (2024). Determinants of carbon sequestration in thinned forests. Science of The Total Environment, 951, 175540.
[54] Yavitt, J.B., Harms, K.E., Garcia, M.N., Wright, S.J., He, F. & Mirabello, M.J. (2009). Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Australian Journal of Soil Research, 47(7), 674-687.
[55] Zhao, Y. & Li, F. (2022). Geostatistical analysis of soil variability and implications for environmental management. Geoderma, 410, 115896.
[56] Zhou, X., Zhang, X., Sharma, R.P., & Guan, F. (2024). Response of bamboo canopy density to terrain, soil and stand factors. Trees, 38, 1353-1366.