[1] Alavipanah, S. K., Matinfar, H. R., & Rafiei Emam, A. (2008). The application of information technology in earth sciences (digital soil mapping): radar, hyperspectral and multispectral remote sensing, geographic information systems (GIS), neural networks, fuzzy sets, and geostatistics. University of Tehran Press, (1st ed., p. 457). (In Persian)
[2] Ali, D., Hussain, A., Begum, F., Lin, C., Ahsan, W. A., & Hussain, A. (2025). Assessing the impact of land use and land cover changes on soil properties and carbon sequestration in the upper Himalayan Region of Gilgit, Pakistan. Sustainable Chemistry One World. https://doi.org/10.1016/j.scowo.2024.100038
[3] Bandari, A. & Khosravipour, B. (2023). The impact of rural poverty on the degradation of the Zagros forests. Geography and Human Relations, 6(1), 116-139.
[4] Basche, A. & DeLonge, M. (2017). The impact of continuous living cover on soil hydrologic properties: A meta-analysis. Soil Science Society of America Journal, 81(5), 1179-1190.
[5] Bazgir, M., Heydari, M., Omidipour, R. & Prevosto, B. (2021). The influence of growth types on soil properties along an elevation gradient in a semi-arid oak forest. Acta Oecologica, 112, 103773.
[6] Benslama, A., Lucas, I.G., Vidal, M.J.J., Almendro-Candel, M.B. & Navarro-Pedreño, J. (2024). Carbon and nitrogen stocks in topsoil under different land use/land cover types in the Southeast of Spain. AgriEngineering, 6(1), 24.
[7] Bogunovic, I., Pereira, P. & Sraka, M. (2017). Spatial variation of soil properties and sampling strategies in agricultural land. Geoderma, 289, 29-39.
[8] Chen, X., Wang, Y. & Liu, H. (2022). Spatial interpolation techniques for assessing soil properties in forest ecosystems. Forest Ecology and Management, 506, 120435.
[9] Cortez, J. (1998). Field decomposition of leaf litters: relationships between decomposition rates and soil moisture, soil temperature and earthworm activity. Soil Biology and Biochemistry, 30(6), 783-793.
[10] Corwin, D.L., Lesch, S.M. & Hopmans, J.W. (2020). Assessment of the spatial variability of soil properties using geostatistical methods. Agricultural Water Management, 231, 105986.
[11] Cui, H., Stein, A. & Myers, D. (1995). Extension of spatial information, Bayesian kriging and updating of prior variogram parameters. Environmetrics, 6(4), 373-384.
[12] Deljouei, A., Sadeghi, S.M.M., Abdi, E., Bernhardt-Römermann, M., Pascoe, E. & Marcantonio, M. (2018). The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian Forest. European Journal of Forest Research, 137(5), 759-770.
[13] Eslaminejad, P., Heydari, M., Kakhki, F. V., Mirab-Balou, M., Omidipour, R., Muñoz-Rojas, M. & Lucas-Borja, M.E. (2020). Plant species and season influence soil physicochemical properties and microbial function in a semi-arid woodland ecosystem. Plant and Soil, 456, 43-59.
[14] Fathizad, H., Karimi, H. & Taze, M. (2015). Study of different geostatistical algorithms for annual rainfall zoning in Ilam Province. Journal of Applied Research in Geographical Sciences, 14(35), 139-154. (In Persian)
[15] Gheitury, M., Heshmati, M., Noroozi, A., Ahmadi, M. & Parvizi, Y. (2020). Monitoring mortality in a semiarid forest under the influence of prolonged drought in Zagros region. International Journal of Environmental Science and Technology, 17(12), 4589-4600.
[16] Ghorbani, K., Salarjazi, M. & Farnia, E. (2018). Evaluation of the Empirical Bayesian Kriging method in groundwater level zoning. Journal of Water and Soil Conservation, 25(1), 165-182. (In Persian)
[17] Gómez, C., Jang, K. & Park, S. (2022). Assessing the Kriging interpolation method for soil moisture mapping. Geoderma, 418, 115806.
[18] Guo, B., Yang, F., Wu, H., et al. (2021). How the variations of terrain factors affect the optimal interpolation methods for multiple types of climatic elements. Earth Science Informatics, 14, 1021-1032. https://doi.org/10.1007/s12145-021-00609-2
[19] Hasanipak, A. (2007). Geostatistics. Tehran, University of Tehran Press. pp. 380.
[20] Heydari, M., Cheraghi, J., Omidipour, R., Rostaminia, M., Kooch, Y., Valkó, O. & Carcaillet, C. (2023). Tree dieback, woody plant diversity, and ecosystem driven by topography in semi-arid mountain forests: Implication for ecosystem management. Journal of Environmental Management, 339, 117892.
[21] Holišová, P., Pietras, J., Darenová, E., Novosadová, K. & Pokorný, R. (2016). Comparison of assimilation parameters of coppiced and non-coppiced sessile oaks. iForest - Biogeosciences and Forestry, 9, 553–559.
[22] Huang, L., Zhao, P. & Wang, R. (2023). Variogram modeling and kriging interpolation for soil characteristics in forested landscapes. Geoderma, 432, 117214.
[23] Jafari Haghighi, M. (2003). Methods of Soil Analysis: Sampling and Important Physical and Chemical Analyses with Emphasis on Theoretical and Practical Principles. Nedaye Zoha Publications, 236 p. (In Persian)
[24] Jiang, Y., Chen, Y. & Wang, X. (2019). Spatial variation of soil properties and their effects on crop yield. Soil & Tillage Research, 186, 10-19.
[25] Kazemi, S. & Hosseinzadeh, M. (2020). High diversity and endemism of herpetofauna in the Zagros Mountains. ECOPERSIA, 8(4), 221–229. Retrieved from http://ecopersia.modares.ac.ir/article-24-38921-en.html
[26] Khan, M., Almazah, M.M.A., Elahi, A., Niaz, R., Al-Rezami, A.Y. & Zaman, B. (2023). Spatial interpolation of water quality index based on Ordinary Kriging and Universal Kriging. Geomatics, Natural Hazards and Risk, 14(1), 2190853.
[27] Khezani, M.-A., Ali-janpour, A., Moatamedi, J. & Shiday Karkaj, I. (2022). The effect of tree canopy cover on understory rangeland species composition: A case study in the Nezhderah reserve, Urmia, West Azerbaijan. Iranian Journal of Plant Research, 35(2), 274-292.
[28] Kokila, A., Nagarajaiah, C., Hanumanthappa, D.C., Shivanna, B., Sathish, K. & Mahadevamurthy, M. (2024). Effect of tree canopy cover on soil moisture dynamics in different agroforestry systems under semi-arid condition. International Journal of Environment and Climate Change.
[29] Kumar, S., Das, S. & Sheelam, S. (2014). Application of CFD and the Kriging method for optimizing the performance of a generic scramjet combustor. Acta Astronautica, 101, 111-119.
[30] Laun, S., Rösch, N., Breunig, M. & Doori, M. A. (2016). Implementation of kriging methods in mobile GIS to estimate damage to buildings in crisis scenarios. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 211-216.
[31] Li, J. & Heap, A.D. (2016). A review of spatial interpolation methods for environmental scientists. Geoscience Frontiers, 7(1), 33-45.
[32] Liu, T., Zhou, H. & Zhang, F. (2022). Spatial distribution of soil organic carbon and its influencing factors in forest ecosystems. Geoderma, 415, 116045.
[33] Mahmoodi, M. A., Mirzaie, M. & Hosseini, S.M.T. (2018). Prediction of soil organic matter spatial distribution using topographic indicators and artificial neural network-kriging technique. Journal of Water and Soil, 32(2), 313-325.
[34] Maleki, S., Minasny, B. & McBratney, A.B. (2018). Effect of variogram uncertainty on spatial prediction estimates in geostatistics. Geoderma, 319, 174-186.
[35] Montes, L., Rubio, J.L. & López, M.V. (2018). Spatial variability of soil properties using semivariogram models. Catena, 171, 259-270.
[36] Nguyen, H.T., Pham, Q.T. & Tran, D.T. (2021). Developing a geostatistical approach for optimal selection of Kriging parameters in soil property mapping. Soil Science Society of America Journal, 85(2), 345-359.
[37] Oliver, M. & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA, 113, 56-69.
[38] Paul, O.O., Sekhon, B.S. & Sharma, S. (2019). Spatial variability and simulation of soil organic carbon under different land use systems: geostatistical approach. Agroforestry Systems, 93(4), 1389-1398.
[39] Pramanik, S., Biswas, S. & Dutta, S. (2023). Utilization of remote sensing and GIS in assessing soil properties. Geoderma, 428, 116763.
[40] Premsudha, R., Kumar, K.D., Prasath, B.H., Sivabalan, M. & Prasath, N. (2024). Data Management System - Water Supply and Channeling with GIS Mapping. International Journal of Advanced Research in Science, Communication and Technology, 4(3), 101-105.
[41] Rahman, M.A., Khan, S. & Lee, C. H. (2023). Application of kriging methods for soil moisture estimation in forested areas. Environmental Research, 221, 115923.
[42] Rebholz, B. & Almekkawy, M. (2020). Efficacy of Kriging interpolation in ultrasound imaging: Subsample displacement estimation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2020, 2137-2141.
[43] Rooney, E. C., Bailey, V., Patel, K. F., Kholodov, A., Golightly, H., & Lybrand, R. (2023). Topography and canopy cover influence soil organic carbon composition and distribution across a forested hillslope in the discontinuous permafrost zone. Permafrost and Periglacial Processes, 34, 331-358.
[44] Ruiz, S. A., Bickel, S. & Or, D. (2021). Global earthworm distribution and activity windows based on soil hydromechanical constraints. Communications Biology, 4(1), 612.
[45] Salehi, A. (2019). Phytoremediation: A technology for cleaning heavy metal-contaminated soils. Human and Environment, 17(2), 27-42.
[46] Shabani, A., Matinfar, H. R., Arekhi, S., & Rahimi Harabadi, S. (2011). Modeling rainfall erosivity factor using geostatistic techniques (Case study: Ilam Dam watershed). Journal of RS and GIS for Natural Resources, 2(2), 56-65. (Translated in Persian)
[48] Song, Y., Wang, X., Wright, G., Thatcher, D., Wu, P. & Felix, P. (2019). Traffic volume prediction with segment-based regression Kriging and its implementation in assessing the impact of heavy vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(1), 232–243.
[49] Stateczny, A. & Włodarczyk-Sielicka, M. (2012). Test results of bathymetric data processing obtained by swath sounder GS+. Zeszyty Naukowe Akademii Marynarki Wojennej, 53(4), 105-118.
[50] Sun, D., Yang, H., Guan, D., Yang, M., Wu, J., Yuan, F. & Zhang, Y. (2018). The effects of land use change on soil infiltration capacity in China: A meta-analysis. Science of the Total Environment, 626, 1394-1401.
[51] Tsogbadrakh, O., Sukhbaatar, G., Ganbaatar, B., Batchuluun, B., Altanjin, D., Kim, K.W., Seah, K.Y., & Oyuntsetseg, B. (2024). Tree canopy area-dependent changes in soil properties: a comparative study in the southern limit of boreal forest distribution. Forest Science and Technology, 20, 58-66.
[52] Wang, L., Zhang, T. & Zhao, X. (2021). Importance of soil properties in maintaining forest ecosystem stability. Environmental Monitoring and Assessment, 193(7), 92-108.
[53] Wang, Z., Wang, G., Li, Y. & Zhang, Z. (2024). Determinants of carbon sequestration in thinned forests. Science of The Total Environment, 951, 175540.
[54] Yavitt, J.B., Harms, K.E., Garcia, M.N., Wright, S.J., He, F. & Mirabello, M.J. (2009). Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Australian Journal of Soil Research, 47(7), 674-687.
[55] Zhao, Y. & Li, F. (2022). Geostatistical analysis of soil variability and implications for environmental management. Geoderma, 410, 115896.
[56] Zhou, X., Zhang, X., Sharma, R.P., & Guan, F. (2024). Response of bamboo canopy density to terrain, soil and stand factors. Trees, 38, 1353-1366.