تأثیر ذرات نانورس و سازگارکننده بر مقاومت به پوسیدگی کامپوزیت چوب ‌پلاستیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی گروه علوم و صنایع چوب و کاغذ، دانشگاه تربیت مدرس، ایران

2 عضو هیات علمی گروه شیمی پلیمر، دانشگاه امیرکبیر، ایران.

3 عضو هیات علمی گروه علوم و صنایع چوب و کاغذ، دانشگاه تربیت مدرس، ایران.

4 عضوهیات علمی گروه علوم و صنایع چوب و کاغذ، دانشگاه زابل، ایران.

چکیده

این تحقیق با هدف بررسی تأثیر استفاده از ذرات نانورس و پلی‌پروپیلن اکسیدشده به‌عنوان سازگارکننده بر مقاومت کامپوزیت چوب پلاستیک در برابر قارچ پوسیدگی سفید انجام گرفت. ابتدا به‌منظور تهیه پلی‌پروپیلن اکسیدشده، پلی‌پروپیلن در مجاورت اکسیژن هوا در مدت زمان 2 ساعت در دستگاه مخلوط کن داخلی اکسید شد. سپس با مخلوط مواد (الیاف چوب، پلی‌پروپیلن، ذرات نانورس و سازگارکننده) با نسبت‌های مشخص در مخلوط کن داخلی، صفحات کامپوزیت چوب پلاستیک در ابعاد 3mm 2×150×150 با استفاده از پرس گرم آزمایشگاهی تهیه گردید. در ادامه، آزمون پوسیدگی با استفاده از قارچ مولد پوسیدگی سفید به‌نام رنگین‌کمان (Coriolus versicolor) انجام گرفت. نتایج نشان داد که استفاده از نانو رس باعث افزایش مقاومت به پوسیدگی نمونه ها و کاهش وزن آن ها در اثر این نوع تخریب گردید. هم‌چنین، تیمارهای فاقد سازگارکننده نسبت به تیمارهای دارای سازگارکننده از کاهش وزنی بیش‌تری برخوردار شدند. بررسی نوع فازها و مورفولوژی کامپوزیت حاوی ذرات نانورس به کمک پراش اشعه ایکس و میکروسکوپ الکترونی انتقالی نشان داد که توزیع ذرات نانورس در زمینه پلیمری از نوع ساختار بین لایه‌ای بوده که این امر خود گواهی بر پایداری بهتر این دسته از کامپوزیت‌ها در برابر حمله قارچ رنگین‌کمان است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Nano-Clay Particles and Compatibilizer on the Decay Resistance of Wood Plastic Composite

نویسندگان [English]

  • Hajar Nafchi 1
  • Majid Abdouss 2
  • Saeed Najafi 3
  • Rahim Gargari 4
1 Tabiat Modares University
2 Amirkabir University
3 Tarbiat Modares niversity
4 University of Zabol
چکیده [English]

The purpose of this study was to evaluate effects of Nano-clay particles and oxidized polypropylene as compatibilizer on the decay resistance of wood plastic composite against Coriolus versicolor fungi. In order to provide oxidized polypropylene as compatibilizer, polypropylene was oxidized in the presence of air oxygen in 2 hours by internal mixer. Afterwards, wood fibers, polypropylene, Nano-clay particles and oxidized polypropylene as compatibilizer with certain ratio were mixed in an internal mixer and were pressed into plates of 150×150×2 mm3 nominal dimensions by using a laboratory hydraulic hot press., Then, carry out the decay test by using a white rot fungus as Coriolus versicolor . Results showed that the weight loss of composite due to decay was proportional to the Nano-clay particles percentage, So that the increasing the percentage of Nano-clay particles from 0% to 4% were associated with Less weight loss and decay. As well as, the samples without compatibilizer showed more weight loss and decay in comparison with those having compatibilizer. Morphology of the composites containing Nano-clay particles are evaluated by using X-ray diffraction and transmission electron microscopy which results demonstrated that distribution of Nano-clay particles in the field of the polymer was intercalation typeSo this is an approval on better stability of this class of composites against Coriolus versicolor fungi.

کلیدواژه‌ها [English]

  • compatibilizer
  • coriolus versicolor
  • Nano-clay
  • oxidized polypropylene
  • wood plastic composite
]1 .[ Jabbari, H., Mansouri, N., and Abdollahi, A. (2009). Investigation the effect of paint containing Nano silver particles in controlling of airborne fungi. Iranian Journal of Association of Environmental Health, 2(1): 28-35.

]2 .[Modirzare, M., Hosseini hashemi, S.Kh., Nourbakhsh, A., and Safdari, V.R. (2011). Investigation of white and brown fungi rots effect on durability and mechanical properties of bagasse-poly propylene composites. Iranian Journal of Wood and Paper Science Research, 26(1): 173-192.

]3 .[ Behzadi Shahrebabk, A., Madhoushi, M., and Mastri Farahani, M.R. (2014). Investigation the physical properties and decay resistance of medium density fiberboard sanding dust/high density polyethylene/nanoclay composite. Iranian Journal of Wood and Paper Science Research, 29(2): 287-298.

]4.[ Kartal, S.N., Green, F., and Clausen, C.A. (2009). Do the unique properties of Nano-metals affect leachability or efficacy against fungi and termites? International Journal of Biodeterioration & Biodegradation, 63(4): 490-495.

]5.[ Faraiallahpour, M., Mehdinia, M., and Khanjanzadeh, H. (2011). Effect of Nano-silver particles on the Decay Resistance of particle board against white rot fungus. 1st National Conference on Nano Science & Nano Technology, Feb.16-18 Yazd, Iran, pp. 1632-1635.

]6.[ Ghorbani vagheei, A., Omidvar, A., Rafighi, A., and Razavi, S. (2010). Investigation on the decay resistance of bagasse-polypropylene composite. Journal of Wood & Forest Science and Technology, 17(1): 117-127.

]7.[ Timar, M.C., Pitman, A., and Mihai, M.D. (1999). Biological resistance of chemically modified aspen composites. International Journal of Bio Deterioration and Biodegradation, 43(4): 181-187.

]8 .[Hassanpour, A., Bazyab, B., Khademieslam, H.A., and Hemasi, A.H. (2010). Effects of fungus Trametes versicolor and Coniophora puteana study, on the mass loss of wood/polypropylene composites. Iranian Journal of Wood and Paper Science Research, 25(1): 102-112.

]9 .[Kazemi, S.M., and Jalilvand, M. (2008). Investigation on wood plastic composite resistance against water, fire and fungal attack compared to untreated maple and elm. Iranian Journal of Wood and Paper Science Research, 22(2): 81-98.

]10.[ Abdouss, M., Sharifi-Sanjarani, N., and Bataille, P. (1999). Oxidation of polypropylene in a solution of monochlorobenzene. Journal of Applied Polymer Science, 47(14): 3417-3427.

]11 .[Standard DIN 52176, September. )1972(. Bestimmung der vorbeugenden Wirkung von Holzschutzmitteln: Prüfung mit holzzerstörenden Basidiomyceten nach dem Klötzchen-Verfahren in Kolleschalen.

]12 .[Liu, Q., Lv, C., Yang, Y., He, F., and Ling, L. (2005). Study on the pyrolysis of wood-derived rayon fiber by thermogravimetry-mass spectrometry. Journal of Molecular Structure, 733(1-3): 193-202.

]13 .[Wu, Q., Lei, Y., Clemons, C.M., Yao, F., Xu, y., and Lian, K. (2007). Proportion of HDPE/clay/wood Nano composites. Journal of Plastic Technology, 27(2): 108-115.

]14 .[Rana, H.T., Gupta, R.K., Ganga Rao, H.V.S., and Sridhar, L.N. (2005). Measurement of moisture diffusivity through layered-silicate Nano composites, Journal of AIChE, 51(12): 3249-3256.

]15 .[Alexandre, B., Marais, S., langevin, S., Mederic, P., and Aubry, T. (2006). Nano composite based polyamide 12/montmorillonite: relationships between structures and transport properties, Journal of Desalination, 199(1-3) 164-166.

]16 .[Bharadwaj, R.K., Mehrabi, A.R, Hamilton, C., Trujillo, C., Murga, M., Fan, R., Chavira, A. and Thompson, A.K. (2002). Structural property relationship cross-linked polyester clay Nano composites, Polymer, 43(13): 3699-3705.

]17 .[Khoeini, M., Bazgir, S., Tamizifar, M., and Nemati, Z. (2008). Study the process modification of Nano-silicate layered for use in polymer Nano-composites. New Materials National Congress, June. 10-12 Tehran, Iran, 503-513p.

]18.[ Khunova, V., Kelnar, I., Simon, P., Duchon, M., Turekova, I. and Balog, K. (2007). Effect of nanoclays on the flame retardancy of polymer nanocomposites. Journal of Chemické listy, 101(1): 22-23.