باران‌ربایی تک‌درختان زبان‌گنجشک در فصول رویش و خزان در اقلیم نیمه‌خشک (مطالعۀ موردی: پارک جنگلی چیتگر)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 عضو هیات علمی دانشگاه تهران، دکتری

3 دانشگاه تامسون ریورز کانادا

4 دانشگاه آزاد اسلامی واحد کرج

چکیده

از مهم‌ترین مباحث امروزی مدیریت منابع آب، میزان اجزای باران (GR) در اکوسیستم‌های جنگل‌کاری و فضای سبز شهری است. هدف از اجرای پژوهش حاضر، مقایسه باران‌ربایی (I) تک درختان جنگل‌کاری شده زبان گنجشک (Fraxinus rotundifolia) در فصول رویش و خزان در پارک جنگلی چیتگر در اقلیم نیمه‌خشک بود. مقدار GR و I طی یک سال اندازه‌گیری به ترتیب با استفاده از شش و 12 عدد باران‌سنج اندازه‌گیری شدند. مقدار I از تفاضل تاج ‌بارش (TF) و GR برآورد گردید. در مجموع 50 رخداد GR، با عمق تجمعی 0/156 میلی‌متر اندازه‌گیری شد که مقدار I تجمعی در کل دوره پژوهش و در دوره‌های برگدار و بی‌برگی به ترتیب 4/19 درصد، 0/23 درصد و 2/16 درصد به دست آمد. بین I و GR در کل دوره پژوهش (862/0R= ) و در دوره‌های برگدار (862/0R= ) و بی‌برگی (950/0R= )، همبستگی‌های مثبت معنی‌داری در سطح 99 درصد مشاهده شد. میانگین درصد I نسبی (I:GR) در کل دوره پژوهش و در دوره‌های برگدار و بی‌برگی به ترتیب 6/46 درصد، 3/49 درصد و 6/41 درصد به دست آمد و میانگین درصد I:GR دوره‌های برگدار و بی‌برگی، اختلاف معنی‌داری را نشان دادند (01/0p<). انتخاب گونه‌هایی با مقدار I پایین، سبب افزایش آب رسیده به سطح خاک جنگل شده و این امر به خصوص در مناطق خشک و نیمه‌خشک که دارای کمبود آب هستند، بسیار مهم است. در این راستا، توجه به میزان تعرق گونه‌های منتخب نیز باید مد نظر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Seasonal Variability of Rainfall Interception under Individual Ash Trees Afforested in a Semiarid Climate, Chitgar Forest Park, Tehran

نویسنده [English]

  • Pedram Attarod 2
چکیده [English]

Recently, the most important topic in water management was to determine the effects of urban forests and green space on partitioning gross rainfall (GR) into the rainfall interception (I), stemflow (SF), and throughfall (TF). The main aim of this research was to quantify the seasonal variations [Growing Season (GS), and Non-Growing Season (NGS)]) in I by individual Fraxinus rotundifolia trees in the Chitgar Forest Park located in a semiarid climate zone of Iran. From the September 2012 to September 2013, GR and TF were collected through 6 and 12 rain-gauges, respectively. I was calculated as the difference between GR and TF. Fifty rainfall events were recorded and the cumulative GR was measured 156.0 mm. Over the study period, GS, and NGS, I ranged 19.4%, 23.0%, and 16.2%, respectively. Significant positive correlations were observed between I and GR over study period (R= 0.862), GS (R= 0.862), and NGS (R= 0.950) (p<0.01). Over the study period, GS, and NGS the percent of the relatives interceptions (I:GR)% were estimated to be 46.6%, 49.3%, and 41.6%, respectively. T-test suggested that there were significant differences between the (I:GR)% values at the different seasons (p<0.01). The selection of trees with the lower I values for plantation coupling with transpiration of selected trees should be considered to increase the higher amounts of net rainfall (NR) in semiarid and arid regions where water availability is a limiting factor for plantations growth.

کلیدواژه‌ها [English]

  • Fraxinus rotundifolia
  • Rainfall interception
  • semiarid climate
  • seasonal variability
  • Water Resource Management
[1]. Bagheri, H., and Attarod, P. (2012). The effect of the meteorological parameters and rainfall size on rainfall interception of Cupressus arizonica and Pinus eldarica in the arid climate zone (case study: Biarjmand-e Shahroud). Iranian Journal of Forest, 3(4): 291-303.

[2]. Hüttel, R.F., Schneider, B.U., and Farrell, E.P. (2000). Forests of the temperate region: gaps in knowledge and research needs. Forest Ecology and Management, 132: 83-96.

[3]. Chang, M. (2006). Forest Hydrology: An Introduction to Water and Forests, Second ed. Taylor and Francis, Boca Raton.

[4]. Shachnovich, Y., Berliner, P.R., and Bar, P. (2008). Rainfall interception and spatial distribution of throughfall in a Pine forest planted in an arid zone. Journal of Hydrology, 349: 168-177.

[5]. Gerrits, A.M.J., Pfister, L., and Savenije, H.H.G. (2010). Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrological Processes, 24: 3011-3025.

[6]. Gash, J.H.C., and Morton, A.J. (1978). An application of the Rutter model to the estimation of the interception loss from the Thetford forest. Journal of Hydrology, 48: 89-105.

[7]. McNaughton, K.G., and Jarvis, P.G. (1983). Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski, T.T. (Ed.), Water Deficits and Plant Growth, vol. VII. Academic Press, pp.

[8]. Calder, I.R. (1990). Evaporation in the Uplands. Wiley, New York.

[9]. Carlyle-Moses, D.E. (2004). Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community. Journal of Arid Environments, 58: 181-202.

[10]. Zinke, P.J. (1967). Forest interception study in the United States. In: International symposium on forest hydrology, W.E. Soper and H.W. Lull, (eds.), Pergamon Press, Oxford, pp. 137-161.

[11]. Rutter, A.J., Morton, A.J., and Robins, P.C. (1975). A predictive model of rainfall interception in forests. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, 12: 367-380.

[12]. Ford, E.D., and Deans, J.D. (1978). The effects of canopy structure on stemflow, throughfall, and interception loss in a young Sitka Spruce plantation. Journal of Applied Ecology, 15: 905-917.

[13]. Black, T.A., Tan, C.S., and Nnyamah, J.U., 1980. Transpiration rate of Douglas-fir trees in thinned and un-thinned stands. Canadian Journal of Soil Science, 60(4): 625-631.

[14]. Dingman, S.L. (1994). Physical Hydrology, Prentice Hall: New York.

[15]. Lundberg, A., Eriksson, M., Halldin, S., Kelliner, E., and Seibert, J. (1997). New Approach to the Measurement of Interception Evaporation. Journal of Atmospheric and Ocean Technology, 14: 1023-1035.

[16]. Iroumé, A., and Huber, A. (2002). Comparison of interception losses in a broadleaved native forest and a Pseudotsuga menziesii (Douglas fir) plantation in the Andes Mountains of southern Chile. Hydrological Processes, 16: 2347-2361.

[17]. Xiao, Q.F., McPherson, E.G., Ustin, S.L., Grismer, M.E., and Simpson, J.R. (2000). Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrological Processes, 14: 763-784.

[18]. Bryant, M., Bhata, S., and Jacobs, J. (2005). Measurements and Modeling of throughfall variability for five forest communities in the Southeastern US. Journal of Hydrology, 312: 95-108.

[19]. Toba, T., and Ohta, T. (2005). An observational study of the factors that influence interception loss in boreal and temperate forests. Journal of Hydrology, 313: 208-220.

[20]. Raupach, M.R., Finnigan, J.J., and Brunet, Y. 1996. Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorology, 78: 351-382.

[21]. Keim, R.F., Skaugest, A.E., and Weiler, M. (2005). Temporal persistence of spatial patterns in throughfall. Journal of Hydrology, 314: 263-274.

[22]. Dunkerley, D. (2000). Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrological Processes, 14: 669-678.

[23]. Brooks, K.N, Ffolliott, P.F., Gregersen, H.M., and DeBano, L.F. (2003). Hydrology and the Management of Watersheds. IowaState Press, Iowa.

[24]. Crockford, R.H., and Richardson, D.P. (1990). Partitioning of rainfall in a eucalypt forest and pine plantation in southeastern Australia: IV The relationship of interception and canopy storage capacity, the interception of these forests, and the effect on interception of thinning the pine plantation. Hydrological Processes, 4: 169-188.

[25]. Germer, S., Elsenbeer, H., and Moraes, J.M. (2005). Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondonia, Brazil). Hydrology and Earth System Sciences, 10(3): 383-393.

[26]. Gash, J.H.C., Lloyd, C.R., and Lachaud, G. (1995). Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170(1-4): 79-86.

[27]. Nanko, K., Hotta, N., and Suzuki, M. (2006). Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. Journal of Hydrology, 329: 422-431.

[28]. Plamondon, A.P., Prevost, M., and Naud, R.C. (1984). Interception de la pluie dans la sapiniere bouleau blanc, Forêt Montmorency. Canadian Journal of Forest Research, 14:722-730.

[29]. Giles, D.G., Black, T.A., and Spittlehouse, D.L. (1985). Determination of growing season soil water deficits on a forested slope using water balance analysis. Canadian Journal of Forest Research, 15:107-114.

[30]. Gush, M.B., Scott, D.F., Jewitt, G.P.W., Schulze, R.E., Lumsden, T.G., Hallowes, L.A., and Görgens, A.H.M. (2001). Estimation of streamflow reductions resulting from commercial afforestation in South Africa. Department of Water Affairs and Forestry. Pretoria, RSA.

[31]. Pypker, T.G., Baond, B.J., Link, T.E., Marks, D., and Unsworth, M.H. (2005). The importance of canopy structure in controlling the interception loss of rainfall: examples from a young and an old-grown Douglas-fir forest. Agricultural and Forest Meteorology, 130: 113-129.

[32]. Pypker, T.G., Tarasoff, C.S, and Koh, H.S. (2012). Assessing the efficacy of two indirect methods for quantifying canopy variables associated with the interception loss of rainfall in temperate hardwood forests. Open Journal of Modern Hydrology, 2: 29-40.

[33]. Sanders, R.A. (1986). Urban vegetation impacts on the hydrology of Dayton, Ohio. Urban Ecology, 9: 361-376.

[34]. Calder, I.R., Hall, R.L., Rosier, P.T.W., Bastable, H.G., and Prasanna, K.T. (1996). Dependence of rainfall interception on drop size: 2. Experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species. Journal of Hydrology, 185: 379-388.

[35]. Aboal, J.R., Jiménez, M.S. Morales, D., and Hernández, J.M. (1999). Rainfall interception in laurel forest in the Canary Islands. Agricultural and Forest Meteorology, 97: 73-86.

[36]. Llorens, P., and Gallart, F. (2000). A simplified method for forest water storage capacity measurement. Journal of Hydrology, 240: 131-144.

[37]. Xiao, Q.F., and McPherson, E.G. (2002). Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosystems, 6: 291-302.

[38]. Price, A.G., and Carlyle-Moses, D.E. (2003). Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. Agricultural and Forest Meteorology, 119: 69-85.

[39]. Guevara-Escobar, A., Gonzalez-Sosa, E., Veliz-Chavez, C., Ventura-Ramos, E., and Ramos-Salinas, M. (2007). Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree an urban area. Journal of Hydrology, 333(2-4): 532-541.

[40]. Fathizadeh, O., Attarod, P., Pypker, T.G., Darvishsefat, A.A., and Zahedi Amiri, G. (2013). Seasonal variability of rainfall interception and canopy storage capacity measured under individual oak (Quercus brantii) trees in Western Iran. Journal of Agricultural Science and Technology, 15:175-188.

[41]. Leyton, L., Reynolds, E.R.C., and Thompson, F.B. (1967). Rainfall interception in forest and moorland. In: Sopper, W.E., Lull, H.W. (Eds.), International Symposium on Forest Hydrology, Pennsylvania State University, Pergamon Press, pp. 163-178.

[42]. Lindroth, A., and Halldin, S. (1986). Numerical analysis of Pine forest evaporation and surface resistance. Agricultural and Forest Meteorology, 38: 59-80.

[43]. Dolman, A.J. (1987). Summer and winter rainfall interception in an Oak forest. Predictions with an analytical and a numerical simulation model. Journal of Hydrology, 90: 1-9.

[44]. Neal, C., Robson, A.J., Bhardwaj, C.L., Conway, T., Jefery, H.A., Meal, M., Ryland, GP., Smith, C.G., and Walls, J. (1993). Relationship between precipitation, stemflow and throughfall for a lowland beech plantation, Black wood, Hamsphire, Southern England: interception at a forest edge and the effects of storm damage. Journal of Hydrology, 146: 221-233.

[45]. Deguchi, A., Hattori, S., and Park, H. (2006). The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. Journal of Hydrology, 319, 80-102.

[46]. Herbst, M., Rosier, P.T.W., McNeil, D.D., Harding, R.J., and Gowing, D.J. (2008). Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agricultural and Forest Meteorology, 148: 1655-1667.

[47]. Staelens, J., De Schrijver, A.D., Verheyen, K., and Verhoest, N. (2008). Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvestris L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrological Processes, 22: 33-45

[48]. Asadian, Y., and Weiler, M. (2009). A new approach in measuring rainfall interception by urban trees in Coastal British Columbia. Water Quality Research Journal of Canada, 44(1): 16-25.

[49]. Xiao, Q.F., and McPherson, E.G. (2011). Rainfall interception of three trees in Okland, California. Urban Ecosystems, 14: 755-769.

[50]. Horton, R.E. (1919). Rainfall interception. Monthly Weather Review, 47: 608-623.

[51]. Aston, A. (1979). Rainfall interception by eight small trees. Journal of Hydrology, 42: 386-396.

[52]. Schellekens, J., Scatena, F.N., Bruijnzeel, L.A., and Wickel, A.J. (1999). Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico. Journal of Hydrology, 225: 168-184.

[53]. Wang, A., Diao, Y., Pei, T., Jin, C., and Zhu, J. (2007). A semi-theoretical model of a canopy rainfall interception for a broad-leaved tree. Hydrological Processes, 21(18): 245-2463.

[54]. Asdask, C., Jarvis, P.G., Van Gardingen, P., and Fraser, A. (1998). Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. Journal of Hydrology, 206: 237-244.

[55]. Gash, J. (1979). An analytical model of rainfall interception by forest. Quarterly Journal of the Royal Meteorological Society, 105: 43-55.

[56]. Loustau, D., Bergigier, P., and Granier, A. (1992). Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of Gash’s analytical model of interception. Journal of Hydrology, 138: 469-485.

[57]. Viville, D., Biron, P., Granier, A., and Probost, A. (1993). Interception in a mountainous declining spruce stand in the Strengbach catchment (Vosges, France). Journal of Hydrology, 144: 273-282.

[58]. Hörmann, G., Branding, A., Clemen, T., Herbst, M., Hinrichs, A., and Thamm, F. (1996). Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany. Agricultural and Forest Meteorology, 79: 131-148.

[59]. Lankreijer, H., Lundberg, A., Grelle, A., Lindroth, A., and Seibert, J. (1999). Evaporation and storage of intercepted rain analysed by comparing two models applied to a boreal forest. Agricultural and Forest Meteorology, 98-99: 595-604.

[60]. Van Der Tol, C., Gash, J.H.C., Grant, S.J., McNeil, D.D., and Robinson, M. (2003). Average wet canopy evaporation for a Sitka spruce forest derived using the eddy correlation-energy balance technique. Journal of Hydrology, 276: 12-19.

[61]. Aussenac, G., and Boulangeat, C. (1980). Interception des precipitations et evapotranspiration reelle dans des peuplements de feuillus (Fagus sylvatica L.) et de resineux (Pseudotsuga menziessi (Mirb) Franco). Annals of Forest Science, 37:91-107.

[62]. Breuer, L., Eckhardt, K., and Frede, H.G. (2003). Plant parameter values for models in temperate climates. Ecological Modelling,169: 237-293.

[63]. Komatsu, H., Tanaka, N., and Kume, T. (2007). Do coniferous forests evaporate more water than broad-leaved forests in Japan? Journal of Hydrology, 336: 361-375.

[64]. Augusto, L., Ranger, J., Binkley, D., and Rothe, A. (2002). Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 59: 233-253.

[65]. Gomez, J.A., Vanderlinden, K., Giraldez, J.V. and Fereres, E. (2001). Rainfall concentration under olive trees. Agricultural Water Management, 55: 53-70.

[66]. Pereira, F.L., Gash, J.H.C., David, J.S., David, T.S., Monteiro, P.R., and Valente, F. (2009). Modelling interception loss from evergreen Oak Mediterranean savannas: Application of a tree-based modelling approach. Agricultural and Forest Meteorology, 149: 680-688.

[67]. Lauenroth, W.K., and Bradford, J.B. (2013). Ecohydrology of dry regions of the United States: water balance consequences of small precipitation events. Ecohydrology, 5(1): 46-53.

[68]. Koichiro, K., and Nobuaki, T. (2004). Rainfall Interception studies of tropical forests in Asia, Abstracts of the Joint AOGS 1st annual meeting and 2nd APHW Conference, Singapore, Vol. II, pp.41.

[69]. David, T.S., Gash, J.H.C., Valente, F., Pereira, J.S., Ferreira, M.I., and David, J.S. (2006). Rainfall interception by an isolated evergreen Oak tree in a Mediterranean savannah. Hydrological Processes, 20: 2713-2726.