عملکرد رویشی درختان صنوبر تبریزی ( Populus nigra) سه‌ساله تحت تأثیر اصلاح خاک با لجن فاضلاب

نوع مقاله : مقاله پژوهشی

نویسندگان

موسسة تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، ترویج و آموزش کشاورزی، تهران، ایران.

10.22059/jfwp.2025.387986.1323

چکیده

لجن فاضلاب به‌عنوان یک پسماند آلی، می‌تواند در زراعت چوب به‌منظور بهبود سطح عناصر غذایی و مواد آلی خاک و در نتیجه افزایش تولید در واحد سطح مورد استفاده قرار گیرد. در این پژوهش، تأثیر کوددهی با لجن فاضلاب (در سه سطح 0، 10 و 20 کیلوگرم بر مترمربع) بر عملکرد رویشی درختان صنوبر تبریزی (Populus nigra L.) سه‌ساله و ویژگی‌های خاک بررسی شد. بدین‌منظور، به‌مدت سه سال در پایان هر فصل رویش در هر تیمار لجن فاضلاب، متغیرهای رویشی (قطر برابر سینه و ارتفاع کل) درختان صنوبر اندازه­گیری و عملکرد تولید چوب محاسبه گردید. در اواسط فصل رویش سوم، با جمع‌آوری نمونه­های گیاهی (ریشه، ساقه و برگ) و خاک، ویژگی‌های فیزیکی-شیمیایی خاک و غلظت عناصر غذایی و فلزات سنگین اندام‌های گیاهی تعیین شد. نتایج نشان داد که اصلاح خاک با لجن فاضلاب افزایش معنی‌دار مادة آلی و سطح عناصر غذایی نیتروژن، فسفر، سولفور، مس و روی را در خاک به‌دنبال داشت. همچنین تیمار 20 کیلوگرم بر مترمربع لجن فاضلاب منجر به افزایش معنی‌دار غلظت برخی فلزات سنگین نظیر نیکل، کروم و سرب در خاک نسبت به تیمار شاهد شد. در خاک اصلاح‌شده با لجن فاضلاب، متغیرهای رویشی درختان صنوبر و جذب برخی عناصر غذایی (نیتروژن، فسفر، روی و مس) و فلزات سنگین (نیکل) در اندام‌های گیاهی به‌طور معنی‌داری بیشتر از تیمار شاهد بود، اما بین دو تیمار لجن فاضلاب تفاوت معنی‌داری مشاهده نشد. برای زراعت چوب با صنوبر تبریزی در شرایطی مشابه با شرایط پژوهش حاضر، کوددهی با تیمار 10 کیلوگرم بر مترمربع لجن فاضلاب توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Growth performance of three-year-old Populus nigra L. trees under soil amendment with sewage sludge

نویسندگان [English]

  • Azadeh Salehi
  • Rafaatollah Ghasemi
Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
چکیده [English]

Sewage sludge, as an organic waste, can be used in poplar plantations to increase soil organic matter and nutrient levels, thereby enhancing productivity per unit area. This study investigated the effects of sewage sludge application at three levels (0, 10, and 20 kg m⁻²) on the growth performance of three-year-old Populus nigra "62/154" trees and soil properties. Over a three-year period, at the end of each growing season, growth variables including diameter at breast height and total height were measured, and wood production was calculated. In the middle of the third growing season, soil and plant samples (root, stem, and leaf) were collected from each treatment in three replicates. In the laboratory, physicochemical properties of the soil as well as concentrations of nutrients and heavy metals in plant organs were analyzed. Results showed that soil amendment with sewage sludge significantly increased organic matter and concentrations of key macro- and micronutrients (N, P, S, Cu, Zn) in the soil. The 20 kg m⁻² treatment also led to a significant increase in the concentration of some heavy metals, including nickel (Ni), chromium (Cr), and lead (Pb). In sludge-amended soils, growth performance of poplar trees and uptake of certain nutrients (N, P, Zn, Cu) and heavy metals (particularly Ni) were significantly higher compared to the control. However, no significant difference was observed between the 10 and 20 kg m⁻² treatments. Based on improved tree growth and the elevated levels of heavy metals in the higher-dose treatment, the application of 10 kg m⁻² sewage sludge is recommended for poplar plantations under similar conditions.

کلیدواژه‌ها [English]

  • Fertilization
  • Heavy metals
  • Nutrients
  • Organic waste
  • Poplar plantation
[1] Boudjabi, S. & Chenchouni, H. (2021). On the sustainability of land applications of sewage sludge: How to apply the sewage biosolid in order to improve soil fertility and increase crop yield? Chemosphere, 282, 131122.
[2] Soudani, L., Mhameda, M., Hermann, H., Mykola, K., Oliver, W., Christin, M., Elena, O. & Nadiaa, B. (2017). Fertilization value of municipal sewage sludge for Eucalyptus camaldulensis plants. Biotechnology Reports, 13, 8-12.
[3] Archie, S.G. & Smith, M. (1981). Survival and growth of plantations in sewage sludge treated soil and older forest growth study. In: Bledose, C.B. (Ed.), Municipal Sludge Application to Pacific North-West forest lands. University of Washington, College of Forest Resources, Washington, DC, pp. 105-13.
[4] Baran, A., Cayci, G., Kutak, C. & Hartmann R. (2001). Composted grape marc as growing medium for hypostases (Hypostases phyllostagya). Bioresource Technology, 78(1), 103-106.
[5] Salehi, A., Calagari, M., Ahmadloo, F., Sayadi, M.H.J., & Tafazoli, M. (2022). Productivity of Populus nigra L. in two different soils over five rotations. Acta Ecologica Sinica, 42(4), 332-337.
[6] Salehi, A. & Ahmadloo, F. (2022). Growth properties and nutrients and heavy metals uptake of two-year old seedlings of three black poplar clones in soil with wastewater irrigation. Forest and Wood Products, 74(4), 445-456. (In Persian)
[7] Pulford, I.D. & Dickinson, N.M. (2005). Phytoremediation technologies using trees. In: Prassad MNV, Naidu R [eds.], Trace elements in the environment, 375-395. CRC Press, New York.
[8] Utmazian, M.N.D., Wieshammer, G., Vega, R. & Wenzel, W.W. (2007). Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 148(1), 155-165.
[9] Salehi, A., Zalesny, R.S. & Calagari, M. (2023). Effects of urban wastewater application on growth, biomass, nutrition, and heavy-metal accumulation of Populus nigra L. “62/154,” P. alba L. “20/45,” P. euramericana (Dode) Guinier “92/40,” and Salix excelsa S.G. Gmel grown in heavy-metal contaminated soil. International Journal of Phytoremediation, 25(10), 1371-1383.
[10] Salehi, A. & Shariat, A. (2024). Comparative performance of Populus spp. and Salix spp. for growth, nutrition, and heavy metal uptake in a wastewater hydroponic system. International Journal of Phytoremediation, 26(9), 1369-1378.
[11] Zobeiri, M. (2005). Forest Inventory (Measurement of Tree and Forest), Tehran University Press, Tehran, Iran, 2005, p. 401.
[12] Bremner, J.M. (1996). Nitrogen-total: 1085-1121. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E. (Eds.), Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, 1390 p.
[13] Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464-465.
[14] Mclean, E.O. (1982). Soil pH and lime requirement: 199-224. In: Page, A.L. (Ed.). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Second Edition. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, 1159 p.
[15] Rhoades, J.D. (1982). Soluble salts: 167-179. In: Page, A.L. (Ed.). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Second Edition. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, 1159 p.
[16] Nelson, D.W. & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter: pp. 961-1010. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. & Sumner, M.E. (Eds.), Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, 1390 p.
[17] Singh, R.P., & Agrawal, M. (2008). Potential benefits and risks of land application of sewage sludge. Waste Management, 28(2), 347-358.
[18] Dahiya, P., Singh, N. & Singh, A. (2022). Impact of sewage sludge application on microbial diversity and fertility of soil: A long-term study. In M.P. Shah, N. Shah, S. Rodriguez-Couto & R. Banerjee (Eds.), Development in Waste Water Treatment Research and Processes, pp. 91-106.
[19] Ansari, M.S., Tauseef, A., Haris, M., Khan, A., Hussain, T. & Khan, A.A. (2022). Effects of heavy metals present in sewage sludge, their impact on soil fertility, soil microbial activity, and environment. Development in Waste Water Treatment Research and Processes, pp. 197-214.
[20] Roig, N., Sierra, J., Martí, E., Nadal, M., Schuhmacher, M. & Domingo, J.L. (2012). Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agriculture, Ecosystems & Environment, 158, 41-48.
[21] Camps-Sagué, F., Bosch-Serra, À.D., Cifuentes-Almeida, A.D., Boixadera-Bosch, M.M. & Domingo-Olivé, F. (2024). Long-Term amendment with sewage sludge: Effects on nutrient value and trace-metal content in different parts of maize plants. Applied Sciences, 14(18), 8105.
[22] Parkpain, P., Sirisukhodom, S. & Carbonell-Barrachina, A.A. (1998). Heavy metals and nutrients chemistry in sewage sludge amended Thai soils. Journal of Environmental Science and Health, 33(4), 573-597.
[23] Nissim, W.G., Cincinelli, A., Martellini, T., Alvisi, L., Palm, E., Mancuso, S. & Azzarello, E. (2018). Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environmental Research, 164, 356-366.
[24] Korboulewsky, N., Dupouyet, S. & Bonin, G. (2002). Environmental risks of applying sewage sludge compost to vineyards: carbon, heavy metals, nitrogen, and phosphorous accumulation. Journal of Environmental Quality, 31(5), 1522-1527.
[25] Hue, N.V. & Ranjith, S.A. (1994). Sewage sludges in Hawaii: chemical composition and reactions with soils and plants. Water, Air, & Soil Pollution, 72, 265-283.
[26] Feng, J., Burke, I.T., Chen, X., Stewart D.I. (2023). Assessing metal contamination and speciation in sewage sludge: implications for soil application and environmental risk. Reviews in Environmental Science and Biotechnology, 22, 1037-1058.
[27] McBride, M.B., Richards, B.K. & Steenhuis, T. (2004). Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products. Plant and Soil, 262, 71-84.
[28] Kubátová, P., Hejcman, M., Száková, J., Vondráčková, S. & Tlustoš, P. (2016). Effects of sewage sludge application on biomass production and concentrations of Cd, Pb and Zn in Shoots of Salix and Populus Clones: Improvement of phytoremediation efficiency in contaminated soils. BioEnergy Research, 9, 809-819.
[29] Clay, D.V. & Dixon, F.L. (1997). Effect of ground-cover vegetation on the growth of poplar and willow short-rotation coppice. Aspects of Applied Biology, 49, 53-60.
[30] Larsen, S.U., Jørgensen, U., & Lærke, P.U. (2014). Willow yield is highly dependent on clone and site. BioEnergy Research, 7, 1280-1292.
[31] Minhas, P.S., Saha, J.K., Dotaniya, M.L., Sarkar, A. & Saha, M. (2022). Wastewater irrigation in India: Current status, impacts and response options. Science of the Total Environment, 808, 152001.
[32] Karltun, E., Lemenih, M., & Tolera, M. (2013). Comparing farmers’ perception of soil fertility change with soil properties and crop performance in Beseku, Ethiopia. Land Degradation and Development, 24(3), 228-35.
[33] Sevel, L., Nord-Larsen, T., Ingerslev, M., Jørgensen, U. & Raulund-Rasmussen, K. (2014). Fertilization of SRC willow, I: Biomass production response. BioEnergy Research, 7, 319-328.
[34] Tsakou, A., Roulia, M. & Christodoulakis, N.S. (2003). Growth parameters and heavy metal accumulation in poplar tree cultures (Populus euramericana) utilizing water and sludge from a sewage treatment plant. Bulletin of Environmental Contamination and Toxicology, 71, 330-337.
[35] Silva, P.H.M., Poggiani, F. & Laclau, J.P. (2011). Applying sewage sludge to Eucalyptus grandis plantations: Effects on biomass production and nutrient cycling through litterfall. Applied and Environmental Soil Science, 2011, 1-11.
[36] Ferraz, A.V., Momentel, L.T. & Poggiani, F. (2016). Soil fertility, growth and mineral nutrition in Eucalyptus grandis plantation fertilized with different kinds of sewage sludge. New Forests, 47, 861-876.
[37] Pascual, I., Avilés, M., Aguirreolea, J. et al. (2008). Effect of sanitized and non-sanitized sewage sludge on soil microbial community and the physiology of pepper plants. Plant and Soil, 310, 41-53.
[38] Antolín, M.C., Muro, I. & Sánchez-Díaz, M. (2010). Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environmental and Experimental Botany, 68(1), 75-82.
[39] Guoqing, X., Xiuqina, C., Lipingb, B., Hongtaob, Q. & Haibob, L. (2019). Absorption, accumulation and distribution of metals and nutrient elements in poplars planted in land amended with composted sewage sludge: A field trial. Ecotoxicology and Environmental Safety, 182, 109360.
[40] Chaney, R.L., Li, Y.M., Angle, J.S., Baker, A.J.M., Reeves, R.D., Brown, S.L., Homer, F.A., Malik, M. & Chin, M. (1999). Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bańuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Rat, p 408.
[41] Garrido, T., Mendoza, J. & Arriagada, F. (2012). Changes in the sorption, desorption, distribution and availability of copper, induced by application of sewage sludge on Chilean soils contaminated by mine tailings. Journal of Environmental Sciences, 24(5), 912-918.
[42] Shaheen, S.M. & Tsadilas, C.D. (2010). Influence of fly ash and sewage sludge application on cadmium and lead sorption by an acidic Alfisol. Pedosphere, 20(4), 436-445.
[43] Mahler, R.J., Bingham, F.T., Sposito, G. & Page, A.L. (1980). Cadmium enriched sewage sludge application to acid and calcareous soils, relation between treatment, Cd in saturated extracts and Cd treatment. Journal of Environmental Quality, 9(3), 359-364.