[1] Boudjabi, S. & Chenchouni, H. (2021). On the sustainability of land applications of sewage sludge: How to apply the sewage biosolid in order to improve soil fertility and increase crop yield? Chemosphere, 282, 131122.
[2] Soudani, L., Mhameda, M., Hermann, H., Mykola, K., Oliver, W., Christin, M., Elena, O. & Nadiaa, B. (2017). Fertilization value of municipal sewage sludge for Eucalyptus camaldulensis plants. Biotechnology Reports, 13, 8-12.
[3] Archie, S.G. & Smith, M. (1981). Survival and growth of plantations in sewage sludge treated soil and older forest growth study. In: Bledose, C.B. (Ed.), Municipal Sludge Application to Pacific North-West forest lands. University of Washington, College of Forest Resources, Washington, DC, pp. 105-13.
[4] Baran, A., Cayci, G., Kutak, C. & Hartmann R. (2001). Composted grape marc as growing medium for hypostases (
Hypostases phyllostagya).
Bioresource Technology, 78(1), 103-106.
[5] Salehi, A., Calagari, M., Ahmadloo, F., Sayadi, M.H.J., & Tafazoli, M. (2022). Productivity of Populus nigra L. in two different soils over five rotations. Acta Ecologica Sinica, 42(4), 332-337.
[6] Salehi, A. & Ahmadloo, F. (2022). Growth properties and nutrients and heavy metals uptake of two-year old seedlings of three black poplar clones in soil with wastewater irrigation. Forest and Wood Products, 74(4), 445-456. (In Persian)
[7] Pulford, I.D. & Dickinson, N.M. (2005). Phytoremediation technologies using trees. In: Prassad MNV, Naidu R [eds.], Trace elements in the environment, 375-395. CRC Press, New York.
[8] Utmazian, M.N.D., Wieshammer, G., Vega, R. & Wenzel, W.W. (2007). Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 148(1), 155-165.
[9] Salehi, A., Zalesny, R.S. & Calagari, M. (2023). Effects of urban wastewater application on growth, biomass, nutrition, and heavy-metal accumulation of Populus nigra L. “62/154,” P. alba L. “20/45,” P. euramericana (Dode) Guinier “92/40,” and Salix excelsa S.G. Gmel grown in heavy-metal contaminated soil. International Journal of Phytoremediation, 25(10), 1371-1383.
[10] Salehi, A. & Shariat, A. (2024). Comparative performance of Populus spp. and Salix spp. for growth, nutrition, and heavy metal uptake in a wastewater hydroponic system. International Journal of Phytoremediation, 26(9), 1369-1378.
[11] Zobeiri, M. (2005). Forest Inventory (Measurement of Tree and Forest), Tehran University Press, Tehran, Iran, 2005, p. 401.
[12] Bremner, J.M. (1996). Nitrogen-total: 1085-1121. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E. (Eds.), Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, 1390 p.
[13] Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464-465.
[14] Mclean, E.O. (1982). Soil pH and lime requirement: 199-224. In: Page, A.L. (Ed.). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Second Edition. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, 1159 p.
[15] Rhoades, J.D. (1982). Soluble salts: 167-179. In: Page, A.L. (Ed.). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Second Edition. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, 1159 p.
[16] Nelson, D.W. & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter: pp. 961-1010. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. & Sumner, M.E. (Eds.), Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, 1390 p.
[17] Singh, R.P., & Agrawal, M. (2008). Potential benefits and risks of land application of sewage sludge. Waste Management, 28(2), 347-358.
[18] Dahiya, P., Singh, N. & Singh, A. (2022). Impact of sewage sludge application on microbial diversity and fertility of soil: A long-term study. In M.P. Shah, N. Shah, S. Rodriguez-Couto & R. Banerjee (Eds.), Development in Waste Water Treatment Research and Processes, pp. 91-106.
[19] Ansari, M.S., Tauseef, A., Haris, M., Khan, A., Hussain, T. & Khan, A.A. (2022). Effects of heavy metals present in sewage sludge, their impact on soil fertility, soil microbial activity, and environment. Development in Waste Water Treatment Research and Processes, pp. 197-214.
[20] Roig, N., Sierra, J., Martí, E., Nadal, M., Schuhmacher, M. & Domingo, J.L. (2012). Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agriculture, Ecosystems & Environment, 158, 41-48.
[21] Camps-Sagué, F., Bosch-Serra, À.D., Cifuentes-Almeida, A.D., Boixadera-Bosch, M.M. & Domingo-Olivé, F. (2024). Long-Term amendment with sewage sludge: Effects on nutrient value and trace-metal content in different parts of maize plants. Applied Sciences, 14(18), 8105.
[22] Parkpain, P., Sirisukhodom, S. & Carbonell-Barrachina, A.A. (1998). Heavy metals and nutrients chemistry in sewage sludge amended Thai soils. Journal of Environmental Science and Health, 33(4), 573-597.
[23] Nissim, W.G., Cincinelli, A., Martellini, T., Alvisi, L., Palm, E., Mancuso, S. & Azzarello, E. (2018). Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environmental Research, 164, 356-366.
[24] Korboulewsky, N., Dupouyet, S. & Bonin, G. (2002). Environmental risks of applying sewage sludge compost to vineyards: carbon, heavy metals, nitrogen, and phosphorous accumulation. Journal of Environmental Quality, 31(5), 1522-1527.
[25] Hue, N.V. & Ranjith, S.A. (1994). Sewage sludges in Hawaii: chemical composition and reactions with soils and plants. Water, Air, & Soil Pollution, 72, 265-283.
[26] Feng, J., Burke, I.T., Chen, X., Stewart D.I. (2023). Assessing metal contamination and speciation in sewage sludge: implications for soil application and environmental risk. Reviews in Environmental Science and Biotechnology, 22, 1037-1058.
[27] McBride, M.B., Richards, B.K. & Steenhuis, T. (2004). Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products. Plant and Soil, 262, 71-84.
[28] Kubátová, P., Hejcman, M., Száková, J., Vondráčková, S. & Tlustoš, P. (2016). Effects of sewage sludge application on biomass production and concentrations of Cd, Pb and Zn in Shoots of Salix and Populus Clones: Improvement of phytoremediation efficiency in contaminated soils. BioEnergy Research, 9, 809-819.
[29] Clay, D.V. & Dixon, F.L. (1997). Effect of ground-cover vegetation on the growth of poplar and willow short-rotation coppice. Aspects of Applied Biology, 49, 53-60.
[30] Larsen, S.U., Jørgensen, U., & Lærke, P.U. (2014). Willow yield is highly dependent on clone and site. BioEnergy Research, 7, 1280-1292.
[31] Minhas, P.S., Saha, J.K., Dotaniya, M.L., Sarkar, A. & Saha, M. (2022). Wastewater irrigation in India: Current status, impacts and response options. Science of the Total Environment, 808, 152001.
[32] Karltun, E., Lemenih, M., & Tolera, M. (2013). Comparing farmers’ perception of soil fertility change with soil properties and crop performance in Beseku, Ethiopia. Land Degradation and Development, 24(3), 228-35.
[33] Sevel, L., Nord-Larsen, T., Ingerslev, M., Jørgensen, U. & Raulund-Rasmussen, K. (2014). Fertilization of SRC willow, I: Biomass production response. BioEnergy Research, 7, 319-328.
[34] Tsakou, A., Roulia, M. & Christodoulakis, N.S. (2003). Growth parameters and heavy metal accumulation in poplar tree cultures (Populus euramericana) utilizing water and sludge from a sewage treatment plant. Bulletin of Environmental Contamination and Toxicology, 71, 330-337.
[35] Silva, P.H.M., Poggiani, F. & Laclau, J.P. (2011). Applying sewage sludge to Eucalyptus grandis plantations: Effects on biomass production and nutrient cycling through litterfall. Applied and Environmental Soil Science, 2011, 1-11.
[36] Ferraz, A.V., Momentel, L.T. & Poggiani, F. (2016). Soil fertility, growth and mineral nutrition in Eucalyptus grandis plantation fertilized with different kinds of sewage sludge. New Forests, 47, 861-876.
[37] Pascual, I., Avilés, M., Aguirreolea, J. et al. (2008). Effect of sanitized and non-sanitized sewage sludge on soil microbial community and the physiology of pepper plants. Plant and Soil, 310, 41-53.
[38] Antolín, M.C., Muro, I. & Sánchez-Díaz, M. (2010). Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions.
Environmental and Experimental Botany, 68(1), 75-82.
[39] Guoqing, X., Xiuqina, C., Lipingb, B., Hongtaob, Q. & Haibob, L. (2019). Absorption, accumulation and distribution of metals and nutrient elements in poplars planted in land amended with composted sewage sludge: A field trial. Ecotoxicology and Environmental Safety, 182, 109360.
[40] Chaney, R.L., Li, Y.M., Angle, J.S., Baker, A.J.M., Reeves, R.D., Brown, S.L., Homer, F.A., Malik, M. & Chin, M. (1999). Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bańuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Rat, p 408.
[41] Garrido, T., Mendoza, J. & Arriagada, F. (2012). Changes in the sorption, desorption, distribution and availability of copper, induced by application of sewage sludge on Chilean soils contaminated by mine tailings. Journal of Environmental Sciences, 24(5), 912-918.
[42] Shaheen, S.M. & Tsadilas, C.D. (2010). Influence of fly ash and sewage sludge application on cadmium and lead sorption by an acidic Alfisol. Pedosphere, 20(4), 436-445.
[43] Mahler, R.J., Bingham, F.T., Sposito, G. & Page, A.L. (1980). Cadmium enriched sewage sludge application to acid and calcareous soils, relation between treatment, Cd in saturated extracts and Cd treatment. Journal of Environmental Quality, 9(3), 359-364.