[1] Fellmoser, P., & Blaß, H. J. (2004). Influence of rolling shear modulus on strength and stiffness of structural bonded timber elements. In CIB-W18 meeting Vol. 37.
[2] Feng, T.Y. & Chiang, L.K. (2020). Effects of densification on low-density plantation species for cross-laminated timber. In AIP Conference Proceedings (Vol. 2284, No. 1). AIP Publishing.
[3] Liew, K.C., Tan, Y.F., Albert, C.M. & Raman, V. (2022). Cross-laminated timber and glulam from low-density Paraserianthes falcataria: A look into densification and shear strength. Forests, 13(10), 1540.
[4] Gui, T., Cai, S., Wang, Z. & Zhou, J. (2020). Influence of aspect ratio on rolling shear properties of fast-grown small diameter eucalyptus lumber. Journal of Renewable Materials, 8(9), 1053-1066.
[5] Pradhan, S., Entsminger, E.D., Mohammadabadi, M., Ragon, K. & Nkeuwa, W.N. (2023). The effects of densification on rolling shear performance of southern yellow pine cross-laminated timber. Construction and Building Materials, 392(3), 132024.
[6] Pradhan, S., Mohammadabadi, M., Seale, R.D., Thati, M., Entsminger, E.D. & Nkeuwa, W.N. (2024). Optimizing lumber densification for mitigating rolling shear failure in cross-laminated timber (CLT). Construction Materials, 4(2), 342-352.
[7] Li, M., Dong, W. & Lim, H. (2019). Influence of lamination aspect ratios and test methods on rolling shear strength evaluation of cross-laminated timber. Journal of Materials in Civil Engineering, 31(12), 04019310.
[8] Nero, R., Christopher, P. & Ngo, T. (2022). Investigation of rolling shear properties of cross-laminated timber (CLT) and comparison of experimental approaches. Construction and Building Materials, 316(1), 125897.
[9] Bianche, J.J., Carneiro, A.D.C.O., Vital, B.R., de Andrade, B.G., Gomes, R.M., de Oliveira Araújo, S. & de Souza, E. C. (2022). Improving the understanding of wood bonding: behavior of different adhesives on the surface of eucalyptus and pine wood. International Journal of Adhesion and Adhesives, 112(1), 102987.
[10] Jennings, J.D., Zink-Sharp, A., Kamke, F.A. & Frazier, C.E. (2005). Properties of compression densified wood. Part I: bond performance. Journal of Ahesion Science and Technology, 19(13-14), 1249-1261.
[11] Pereira, C.R., Mölleken, R.E., de Souza, F.H., Capellari, G.S., Neto, S.C. & Azevedo, E.C. (2016). Evaluation of MDF bonding with polyurethane of castor oil. Applied Adhesion Science, 4(13), 1-7.
[12] Derikvand, M. & Pangh, H. (2016). A modified method for shear strength measurement of adhesive bonds in solid wood. BioResources, 11(1).
[13] Afshari, Z., & Malek, S. (2022). Moisture transport in laminated wood and bamboo composites bonded with thin adhesive layers–A numerical study. Construction and Building Materials, 340, 127597. [14] Aicher, S., Hirsch, M. & Christian, Z. (2016). Hybrid cross-laminated timber plates with beech wood cross-layers. Construction and Building Materials, 124(4), 1007-1018.
[15] Ehrhart, T. & Brandner, R. (2018). Rolling shear: Test configurations and properties of some European soft-and hardwood species. Engineering Structures, 172(4), 554-572.
[16] Li, Q., Wang, Z., Liang, Z., Li, L., Gong, M. & Zhou, J. (2020). Shear properties of hybrid CLT fabricated with lumber and OSB. Construction and Building Materials, 261(4), 120504.
[17] Wang, Z., Gong, M. & Chui, Y.H. (2015). Mechanical properties of laminated strand lumber and hybrid cross-laminated timber. Construction and Building Materials, 101(1), 622-627.
[18] Wang, Z., Fu, H., Gong, M., Luo, J., Dong, W., Wang, T. & Chui, Y. H. (2017). Planar shear and bending properties of hybrid CLT fabricated with lumber and LVL. Construction and Building Materials, 151(4), 172-177.
[19] Davids, W.G., Willey, N., Lopez-Anido, R., Shaler, S., Gardner, D., Edgar, R. & Tajvidi, M. (2017). Structural performance of hybrid SPFs-LSL cross-laminated timber panels. Construction and Building Materials, 149(3), 156-163.
[20] Yang, S.M., Lee, H.H. & Kang, S.G. (2021). Research trends in hybrid cross-laminated timber (CLT) to enhance the rolling shear strength of CLT. Journal of the Korean Wood Science and Technology, 49(4), 336-359.
[21] saleheh Shushtari, M.H. Behnamfar, K. & Ghadiripour, P. (2010). Effects of cutting methods on growth and yield of Eucalyptus camaldulensis 9616 sprouts in Khouzestan province. Iranian Journal of Forest and Poplar Research, 18(3), 484-469. (In Persian)
[22] Dehmardeh, G. M. (2012). Investigation on physical, mechanical, chemical and biometrical properties of E. camaldulensis wood from Sistan Region. Journal of Wood and Forest Science and Technology, 18(3), 157-170. (In Persian)
[23] Seng Hua, L., Wei Chen, L., Antov, P., Kristak, L. & Md Tahir, P. (2022). Engineering wood products from Eucalyptus spp. Advances in Materials Science and Engineering, 2022(1), 1-14.
[24] Dong, W., Wang, Z., Chen, G., Wang, Y., Huang, Q. & Gong, M. (2023). Bonding performance of cross-laminated timber-bamboo composites. Journal of Building Engineering, 63(1), 105526.