Accuracy investigation of forest canopy height estimation by ICESat-2 satellite in Kheyroud forest

Document Type : Research Paper

Authors

1 Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, Iran.

2 CIRAD, CNRS, INRAE, TETIS, University of Montpellier, AgroParisTech, CEDEX 5, 34093 Montpellier, France.

10.22059/jfwp.2024.368338.1269

Abstract

Knowing the forest canopy height is essential for evaluating the health and dynamics of forest ecosystems, as well as for monitoring and modeling the carbon cycle and biodiversity. However, measuring canopy height through ground surveys is costly and time-consuming. Since 2018, the ICESat-2 satellite, equipped with the ATLAS laser sensor, has enabled the direct measurement of tree height. Although ICESat-2 is specifically designed to estimate ice height, it also provides significant data on vegetation height on the Earth's surface. This study aims to investigate the ability of the ATLAS sensor to accurately estimate forest canopy height in northern Iran. For this purpose, the vegetation height data from the ATLAS sensor (ATL08) was evaluated in the Kheyroud experimental forest. To validate the accuracy of the estimated forest canopy height by ATLAS, the forest height data obtained from the satellite were compared with the maximum tree height measured in 121 plots collocated with LiDAR footprints. The estimated forest canopy height by ATLAS and the maximum measured height of trees were compared using a t-test. The RMSE, rRMSE, and R2 values were 0.87 m, 2.7%, and 0.98, respectively, indicating the high accuracy of the ATLAS sensor in forest canopy height estimation. The results of the t-test showed that the mean difference between the measured maximum height of trees in the plots and the corresponding values extracted from ICESat-2 satellite data is not statistically significant (P > 0.05). This study demonstrates that the satellite estimates forest canopy height with very good accuracy in the forests of northern Iran, with a slight overestimation in areas with low-height trees.

Keywords

Main Subjects


[1] Namiranian, M. (2006). Measurement of Tree and Forest Biometry. University of Tehran Press, Tehran. 594 p. (In Persian)
[2] Cairns, M., Barker, J., Shea, R., & Haggerty, P. (1995). Carbon dynamics of Mexican tropical evergreen forests: influence of forestry mitigation options and refinement of carbonflux estimates. Interciencia, 20(6), 401-408.
[3] Ahmed, R.U. (2012). Accuracy of Biomass and Structure Estimates from Radar and Lidar, A dissertation of doctor of philosophy, University of Massachusetts – Amherst.
[4] Khorrami, R.A., Darvishsefat, A.A., Tabari Kochaksaraei, M., & Shataee Jouybari, Sh. (2014). Potential of LIDAR data for estimation of individual tree height of Acer velutinum and Carpinus betulus. Iranian Journal of Forest, 6(2), 127-140. (In Persian)
[5] Perko, R., Raggam, H., Gutjahr, K., & Schardt, M. (2010). The capabilities of terrasar-x imagery for retrieval of forest parameters. In: ISPRS TC VII Symposium - 100Years ISPRS. July 5-7, 2010, Vienna, Austria. pp. 452-456.
[6] Poli, D., & Caravaggi, I. (2012). Digital surface modelling and 3D information extraction from spaceborne very high resolution stereo pairs. JRC Scientific and Technical Reports, Ispra, Luxembourg.
[7] Wang, X., Cheng, X., Gong, P., Huang, H., Li, Zh., & Li, X. (2011). Earth science applications of ICESat/GLAS: a review. International Journal of Remote Sensing, 32(23), 8837-8864.
[8] Hese, S., Lucht, W., Schmullius, C., Barnsley, M., Dubayah, R., Knorr, D., Neumann, K., Riedel, T., & Schroter, K. (2005). Global biomass mapping for an improved understanding of the Co2 balance, The Earth observation mission Carbon-3D. Remote Sensing of Environment, 94, 94-104.
[9] Pflugmacher, D., Cohen, W., Kennedy, R., & Lefsky, M., (2008). Regional applicability of forest height and aboveground biomassModels for the Geoscience Laser Altimeter System. Forest Science, 54(6), 647-657.
[10] Hayashi, M., Saigusa, N., Oguma, H., & Yamagata, Y., (2013). Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan. ISPRS Journal of Photogrammetry and Remote Sensing, 8, 12-18.
[11] Neuenschwander, A.L. and Pitts, K. (2019). The ATL08 land and vegetation product for the ICESat-2 Mission, Remote Sensing of Environment, 221: 247-259.
[12] Rajab Pourrahmati, M., Darvishsefat, A.A., Baghdadi, N., Namiranian, M., & Soofi Mariv, H. (2015). Estimation of forest canopy height in mountainous areas using ICESat-GLAS data. Iranian Journal of Forest and Poplar Research, 23(1), 90-103.
[13] Fayad, I., Baghdadi, N., Bailly, J-S., Barbier, N., Gond, V., El Hajj, M., Fabre, F., & Bourgine, B. (2014). Canopy height estimation in French Guiana with LiDAR ICESat/GLAS data using principal component analysis and random forest regressions. Remote Sensing, 6(12), 11883-11914.
[14] Lefsky, M.A., Keller, M., Pang, Y., De Camargo, P.B., & Hunter, M.O. (2007). Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveform. Journal of Applied Remote Sensing, 1(1), 1-18.
[15] Wang, C., Zhu, X.., Nie, Sh., Xiaohuan, X., Li, D., Zheng, W., & Chen, Sh. (2019). Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA. Optics Express, 27(26), 38168-38179.
[16] Lin, X., Xu, M., Cao, C., Dang, Y., Bashir, B., Xie, B., & Huang, Zh. (2020). Estimates of forest canopy height using a combination of ICESat-2/ATLAS data and stereo-photogrammetry. Remote Sensing, 12(21), 3649.
[17] Wang, L., Niu, Z., Shang, R., Qin, Y., Wang, L., & Chen, H. (2020). High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. International Journal of Applied Earth Observation and Geoinformation, 92, 102163.
[18] Zhang J., Tian, J., Li, X., Wang, L., Chen, B., Gong, H., Ni, R., Zhou, B., & Yang, C. (2021). Leaf area index retrieval with ICESat-2 photon counting LiDAR. International Journal of Applied Earth Observations and Geoinformation, 103, 102488.
[19] Tang, H., Dubayah, R., Swatantran, A., Hofton, M., Sheldon, S., Clark, D.B., & Blair, B. (2012). Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sensing of Environment, 124, 242-250.
[20] Rajab Pourrahmati, M., Baghdadi, N., & Fayad, I. (2023). Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests. Remote Sensing, 15(6), 1522.
[21] Faculty Members of Forestry and Forest Economics Department. (2013). 2nd Namkhaneh district revision forestry project, experimental and research forest Tehran University (Kheyrud Forest), Department of Natural Resources. 155 p. (In Persian)
[22] Faculty Members of Forestry and Forest Economics Department. (2010). Gorazbon district revision forestry project, experimental and research forest Tehran University (Kheyrud Forest), Department of Natural Resources. 175 p. (In Persian)
[23] Etemad, V., Namiranian, M., Zobeiri, M., Majnounian, B., & Moradi, G. (2013). Qualitative and Quantitative Variation of Forest Stands after one Period of Forest Management Plan (Case study: Namkhane District Kheyrud Forest). Journal of Forest and Wood Products, 66(3), 243-256.
[24] Magruder, L.A., Neumann, T., & Kurtz, N. (2021). ICESat-2 early mission synopsis and observatory performance. Earth and Space Science, 8, e2020EA001555.
[25] Neumann, T.A., Martino, A.J., Markus, T., Bae, S., Bock, M.R., Brenner, A.C., Brunt, K.M., Cavanaugh, J., Fernandes, S.T., Hancock, D.W., Harbeck, K., Lee, J., Kurtz, N.T., Luers, Ph.J., Luthcke, S.B., Magruder, L., Pennington, T.A., Ramos-Izquierdo, L., Rebold, T., Skoog, J., & Thomas, T.C. (2019). The Ice, Cloud, and Land Elevation Satellite – 2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sensing of Environment, 233, 111325.
[26] Neuenschwander, A.L., Pitts, K.L., Jelley, B.P., Robbins, J., Klotz, B., Popescu, S.C., Nelson, R.F., Harding, D., Pederson, D., & Sheridan, R. (2021). ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 4. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi.org/10.5067/ATLAS/ATL08.004.
[27] Ma, J., Zhang, W., Ji, Y., Huang, J., Huang, G., & Wang, L. (2023). Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms. Frontiers in Plant Science, 14, 1258521.
[28] Moudrý, V., Gdulová, K., Gábor, L., Šárovcová, E., Barták, V., Leroy, F., Špatenková, O., Rocchini, D., & Prošek, J. (2022). Effects of environmental conditions on ICESat-2 terrain and canopy heights retrievals in Central European Mountains. Remote Sensing of Environment, 279, 113112.
[29] Feng, T., Duncanson, L., Montesano, P., Hancock, S., Minor, D., Guenther, E., & Neuenschwander, A.L. (2023). A systematic evaluation of multi-resolution ICESat-2 ATL08 terrain and canopy heights in boreal forests. Remote Sensing of Environment, 291, 113570.
[30] Neuenschwander, A.L. (2021). ICESat-2 for Forestry Applications. In Proceedings of the SilviLaser Conference 2021. pp. 346-349.
[31] Narine, L.L., Popescu, S.C., & Malambo, L. (2023). A Methodological Framework for Mapping Canopy Cover Using ICESat-2 in the Southern USA. Remote Sensing, 15(6), 1548.