Effects of (Cydalima perspectalis Walker) on the quality characteristics of leaf litter and soil (Case study: Cheshmebalbel Boxwood Reserve, Bandargaz, Golestan Province)

Document Type : Research Paper

Authors

1 Department of Forest Science and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.

2 Department of Forestry and Forest Ecology, Faculty of Natural Resources, University of Agricultural Sciences and Natural Resources, Sari, Iran.

10.22059/jfwp.2023.365837.1264

Abstract

In this study, the impact of boxwood moth pest defoliation on the dynamics of leaf litter and soil nutrients in the Cheshmebolbel boxwood (Buxus hyrcana) reserve was evaluated. A random sampling technique was employed to collect litter layer samples (using a 400 cm2 frame) and soil samples (using a metal cylinder with an 8 cm diameter and a 10 cm depth) from 32 sites in unpolluted and polluted boxwood stands. The results revealed that only soil moisture percentage differed significantly among the soil physical variables, whereas all chemical soil variables showed significant differences between the two polluted and unpolluted boxwood sites. Furthermore, basal respiration (0.14, 0.12), metabolic rate, microbial ratio, and carbon availability index were significantly higher in the polluted sites compared to the unpolluted site, while no significant difference was observed based on the microbial-carbon respiration index. The principal component analysis (PCA) results demonstrated a distinct separation of the two sites, both polluted and unpolluted, along the first axis, based on both litter and soil variables. In this context, nitrogen, metabolic rate, moisture, nitrate, ammonium, and stimulated respiration (0.30, 0.39) exhibited a positive correlation with the first axis, representing the concentration of the unpolluted stand. On the other hand, C/N ratio, potassium, magnesium, calcium, and microbial biomass carbon displayed a negative correlation with the first axis, representing the concentration of unpolluted sites. In general, the findings of this research underscore the substantial influence of defoliation induced by pest outbreaks on an important aspect of forest ecosystem health, performance, and nutrient cycling.

Keywords

Main Subjects


[1] Avila, J.M., Gallardo, A., & Gomez-Aparicio, L. (2019). Pathogen-induced tree mortality interacts with predicted climate change to alter soil respiration and nutrient availability in Mediterranean systems. Biogeochemistry, 142, 53-71.
[2] Asadi H., Hosseini, S.M., Esmailzadeh, A., & Ahmadi, A. (2018). Investigating the flora, morphology and ecology of boxwood habitats in the protected forest of Khaybus, Mazandaran. Journal of Plant Biology, 3(8): 27-40. (In Persian)
[3] Asdian. M., Hojjati, S.M., Pourmjidian, M.R., & Faleh, A.  (2012). The effect of different types of land use on the physical, chemical, and biological properties of soil in Al-Nandan Sari forest. Journal of Forest and Wood Products, 23(4), 388-377. (In Persian)
[4] Avila, J. M., Gallardo, A., Ibáñez, B., & Gómez‐Aparicio, L. (2016). Quercus suber dieback alters soil respiration and nutrient availability in Mediterranean forests. Journal of Ecology, 104(5), 1441-1452.‏
[5] Alef, K., & Nannipieri, P. (1995). Methods in Applied soil Microbiology and Biochemistry (No. Electronic Books154079). London San Diego: Academic Press, c1995.
[6] Ahyaei, A., & Behbahanizadeh, M. (1993). Description of soil chemical methods. Soil and Water Research Institute, 226p.
[7] Anderegg, W. R., Kane, J. M., & Anderegg, L. D. (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3(1), 30-36.‏
[8] Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J. C., Breshears, D. D., Zou, C. B., & Huxman, T. E. (2009). Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Ciences, 106(17), 7063-7066.
‏ [9] Barba, J., Yuste, J. C., Martínez-Vilalta, J., & Lloret, F. (2013). Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest. Forest Ecology and Management, 1(306), 79-87.‏
[10] Barba, J., Curiel Yuste, J., Poyatos, R., Janssens, I. A., & Lloret, F. (2016). Strong resilience of soil respiration components to drought-induced die-off resulting in forest secondary succession. Oecologia, 1(182), 27-41.‏
[11] Bardgett, R. D., Wardle, D. A., & Yeates, G. W. (1998). Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30(14), 1867-1878.‏
[12] Bieganowski, A., Malý, S., Frąc, M., Tuf, I. H., Váňa, M., Brzezińska, M., Siebielec, G., Lipiec, J.,  & Šarapatka, B. (Eds.). (2015). Laboratory Manual. Central Institute for Supervising and Testing in Agriculture.‏
[13] Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-Total 1. Methods of soil analysis. Chemical and Microbiological Properties, 595-624.
[14] Berg, B., & McClaugherty, C. (2008). Plant litter: Decomposition, Humus Formation, Carbon Sequestration (No. 04; QH541. 5. S6, B4 2008.). Berlin: Springer.‏
[15] Bond-Lamberty, B., & Thomson, A. (2010). A global database of soil respiration data. Biogeosciences, 7(6), 1915-1926.‏
[16] BassiriRad, H., Constable, J. V., Lussenhop, J., Kimball, B. A., Norby, R. J., Oechel, W. C., Reich, P.B., & Silim, S. (2003). Widespread foliage δ15N depletion under elevated CO2: inferences for the nitrogen cycle. Global Change Biology, 9(11), 1582-1590.‏
[17] Chapman, H.D., & Pratt, P.F. (1961). Method of analysis for soils, plants and waters. University of California. Division of Agricultural Sciences. Book Review. https://doi.org/10.2136/sssaj1963.03615995002700010004x
[18] Chen, G. S., Yang, Y. S., Guo, J. F., Xie, J. S., & Yang, Z. J. (2011). Relationships between carbon allocation and partitioning of soil respiration across world mature forests. Plant Ecology, 212, 195-206.‏
[19] Cobb, T., Hannam, K., Kishchuk, B., Langor, D., Quideau, S., & Spence, J. (2010). Wood-feeding beetles and soil nutrient cycling in burned forests: implications of post-fire salvage logging. Agricultural and Forest Entomology, 12(1), 9.‏
[20] Dietze, M. C., & Matthes, J. H. (2014). A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecology Letters, 17(11), 1418-1426.‏
[21] Edburg, S. L., Hicke, J. A., Brooks, P. D., Pendall, E. G., Ewers, B. E., Norton, U., ... & Meddens, A. J. (2012). Cascading impacts of bark beetle‐caused tree mortality on coupled biogeophysical and biogeochemical processes. Frontiers in Ecology and the Environment, 10(8), 416-424.‏
[22] Fürstenberg-Hägg, J., Zagrobelny, M., & Bak, S. (2013). Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5), 10242-10297.‏
[23] Galmán, A., Abdala‐Roberts, L., Zhang, S., Berny‐Mier y Teran, J. C., Rasmann, S., & Moreira, X. (2018). A global analysis of elevational gradients in leaf herbivory and its underlying drivers: Effects of plant growth form, leaf habit and climatic correlates. Journal of Ecology, 106(1), 413-421.‏
[24] Ghazanshahi, J. (2006). Soil and plant analysis. Homa Publications, 292p.
[25] García-Angulo, D., Hereş, A. M., Fernández-López, M., Flores, O., Sanz, M. J., Rey, A., ... & Yuste, J. C. (2020). Holm oak decline and mortality exacerbates drought effects on soil biogeochemical cycling and soil microbial communities across a climatic gradient. Soil Biology and Biochemistry, 149, 107921.‏
[26] Hamilton III, E. W., & Frank, D. A. (2001). Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82(9), 2397-2402.‏
[27] Holland, J. N. (1995). Effects of above-ground herbivory on soil microbial biomass in conventional and no-tillage agroecosystems. Applied Soil Ecology, 2(4), 275-279.‏
[28] Hunter, M. D., Reynolds, B. C., Hall, M. C., Frost, C. J., & Ohgushi, T. (2012). Effects of herbivores on ecosystem processes: the role of trait-mediated indirect effects. In Trait-mediated indirect interactions, edited by T. Ohgushi, O Schmitz, R.D. Holt: Cambridge University Press. 339-370.‏
[29] Isaac, R. A., & Johnson, W. C. (1975). Collaborative study of wet and dry ashing techniques for the elemental analysis of plant tissue by atomic absorption spectrophotometry. Journal of the Association of Official Analytical Chemists, 58(3): 436-440
[30] Hicke, J. A., Johnson, M. C., Hayes, J. L., & Preisler, H. K. (2012). Effects of bark beetle-caused tree mortality on wildfire. Forest Ecology and Management, 271, 81-90.‏
[31] Jafari Haqiqi M. (2003). Methods of soil analysis (sampling and important physical and chemical analyses) Nadayi Zahi Publications, 236 p.
[32] Jalili, A., & Jamzad, Z. (1999). Red data book of Iran: A preliminary survey of endemic, rare and endangered plant species in Iran, Research Institute of Forests and Rangelands Press, Problems of Ecology, 6(5), 520-524.
[33] Koch, Y., & Tavakoli, M. (2017). Investigating the activity of soil and microbial organisms under the canopy of pure and mixed broadleaf stands of Caspian forests. Iranian Journal of Forest, 10, 89-100. (In Persian)
[34] Khabazi, F., & Esmailzadeh, O. (2020). Classification of plant communities of (Buxus hyrcana Pajark) in Cheshme Belbel forest (Bandargaz, Golestan). Forest Research and Development, 6(3), 491-503.
[35] Kooch, Y., Parsapour, M. K., Nouraei, A., Kartalaei, Z. M., Wu, D., Gómez-Brandón, M., & Lucas-Borja, M. E. (2023). The effect of silvicultural systems on soil function depends on bedrock geology and altitude. Journal of Environmental Management, 345, 118657.‏
[36] Kooijman, A. M., Weiler, H. A., Cusell, C., Anders, N., Meng, X., Seijmonsbergen, A.C., & Cammeraat, L. H. (2019). Litter quality and microtopography as key drivers to topsoil properties and understorey plant diversity in ancient broadleaved forests on decalcified marl. Science of the Total Environment, 684, 113-125.‏
[37] Kristensen, J. A., Metcalfe, D. B., & Rousk, J. (2018). The biogeochemical consequences of litter transformation by insect herbivory in the Subarctic: a microcosm simulation experiment. Biogeochemistry, 138: 323-336.‏
­[38] Kristensen, J. A., Michelsen, A., & Metcalfe, D. B. (2020). Background insect herbivory increases with local elevation but makes minor contribution to element cycling along natural gradients in the Subarctic. Ecology and Evolution, 10(20), 11684-11698.‏
[39] Krüger, E. O. (2008). Glyphodes perspectalis (Walker, 1859) -new for the European fauna (Lepidoptera: Crambidae). Entomologische Zeitschrift mit Insekten-Börse, 118(2), 81-83.‏
[40] Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., ... & Safranyik, L. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452(7190): 987-990.‏
[41] Kooch, Y., Ghorbanzadeh, N., Wirth, S., Novara, A., & Piri, A. S. (2021). Soil functional indicators in a mountain forest-rangeland mosaic of northern Iran. Ecological Indicators, 126: 107-672.
‏  [42] Kooch, Y., & Hosseini, S.M. (2015). Forest Soil Ecology (Concepts and Algorithms). University Jihad Publications, Mazandaran Branch.
[43] Langenbruch, C., Helfrich, M., & Flessa, H. (2012). Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil, 352: 389-403.‏
[44] le Mellec, A., & Michalzik, B. (2008). Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Canadian Journal of Forest Research, 38(7), 1829-1841.
‏ [45] Leuthardt, F. L., & Baur, B. (2013). Oviposition preference and larval development of the invasive moth C ydalima perspectalis on five E uropean box‐tree varieties. Journal of Applied Entomology, 137(6), 437-444.‏
[46] Li, D., Niu, S., & Luo, Y. (2012). Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta‐analysis. New Phytologist, 195(1), 172-181.‏
[47] Louda, S. M., Keeler, K. H., & Holt, R. D. (1990). Herbivore influences on plant performance and competitive interactions. Academic Press, New York. pp. 413-444.‏
[48] Leal, F., Aburto, F., Aguilera, N., Echeverría, C., & Gatica-Saavedra, P. (2023). Forest degradation modifies litter production, quality, and decomposition dynamics in Southern temperate forests. Frontiers in Soil Science, 3, 111-1694.‏
[49] Manteghi, N. (2011). Description of laboratory methods and investigations on soil and water samples - Publication No. Soil and Water Research Institute.168p.
[50] Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A.K. (2007). Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agriculture, Ecosystems & Environment, 118(1-4), 130-142.‏
[51] Matsiakh, I., Kramarets, V., & Mamadashvili, G. (2018). Box tree moth Cydalima perspectalis as a threat to the native populations of Buxus colchica in Republic of Georgia. Journal of the Entomological Research Society, 20(2), 29-42.‏
[52] Morehouse, K., Johns, T., Kaye, J., & Kaye, M. (2008). Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Forest Ecology and Management, 255(7), 2698-2708.‏
[53] Mafi, S., Berari, H., Brimani-Verandi, H., Brimani-Verandi, M.A., & Brari, M. (2018). An analysis of the consequences of boxwood moth damage in Hyrkani forests, Extension Journal of Forest Conservation and Exploitation Hyrcanian, 1(2): 12-3.
[54] Mylliemngap, W., Nath, D., & Barik, S. K. (2016). Changes in vegetation and nitrogen mineralization during recovery of a montane subtropical broadleaved forest in North-eastern India following anthropogenic disturbance. Ecological Research, 31, 21-38.‏
[55] Matthes, J. H., Lang, A. K., Jevon, F. V., & Russell, S. J. (2018). Tree stress and mortality from emerald ash borer does not systematically alter short-term soil carbon flux in a mixed northeastern US forest. Forests, 9(1), 37.
‏ [56] Neziri, I. R. (2020). Effect of Western Spruce Budworm Herbivory on Forest soils and Litter Decomposition in central Washington. Central Washington University. https://digitalcommons.cwu.edu/etd/1389
[57] Nilsson, M. C., Wardle, D. A., & Dahlberg, A. (1999). Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos, 16-26.‏
[58] Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857-866.‏
[59] Olsen, S.R., & dean, L. (1965). Methods of soil Analysis. American Society of Agronomic, 1044-1047.
[60] Owen, J. S., Wang, M. K., Wang, C. H., King, H. B., & Sun, H. L. (2003). Net N mineralization and nitrification rates in a forested ecosystem in northeastern Taiwan. Forest Ecology and Management, 176(1-3), 519-530.‏
[61] Page, A.L., Miller, R.H., & Keeney, D.R. (1982). Methods of soil analysis, chemical and microbiological properties. American society of Agronomy, Inc. soil Science of American. 220 p.
[62] Page, L. M., & Cameron, A. D. (2006). Regeneration dynamics of Sitka spruce in artificially created forest gaps. Forest Ecology and Management, 221(1-3), 260-266.‏
[63] Paterson, E., & Sim, A. (2000). Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. Journal of Experimental Botany. 1(51): 1449–1457.
[64] Piazza, M. V., Mazía, N., Kitzberger, T., & Chaneton, E. J. (2021). Chronic insect herbivores accelerate litter decomposition and nutrient recycling rates along an environmental/herbivory gradient in northern Patagonia. Forest Ecology and Management, (479), 118-534.
[65] Pojasok, T., & Kay, B. D. (1990). Assessment of a Combination of Wet Sieving and Turbidimetry to Characterize the Structural Stability of Moist Aggregates. Canadian Journal of Soil Science, 70(1), 33-42.
[66] Paudel, E., Dossa, G.G., de Blécourt, M., Beckschäfer, P., Xu, J. & Harrison, R.D. (2015). Quantifying the factors affecting leaf litter decomposition across a tropical forest disturbance gradient. Ecosphere, 6(12), 1-20.
[67] Rodríguez, A., Durán, J., Yuste, J.C., Valladares, F. & Rey, A. (2023). The effect of tree decline over soil water content largely controls soil respiration dynamics in a Mediterranean woodland. Agricultural and Forest Meteorology, 1(333), 109-398.
[68] Soleimanipour, S., & Esmailzad, O. (2014). Introduction of flora, morphology and chorology of boxwood (Buxus hyrcana) habitats in Frame Sari forests. Journal of Taxonomy and Biosystematics, 7(23), 39-56.
[69] Valladares, F. & Guzmán, B. (2006). Canopy structure and spatial heterogeneity of understory light in an abandoned Holm oak woodland. Annals of Forest Science, 63(7), 749-761.
[70] Vitousek, P. M., Hedin, L. O., Matson, P. A., Fownes, J. H., & Neff, J. (1998). Within-system element cycles, input-output budgets, and nutrient limitation. Successes, Limitations, and Frontiers in Ecosystem Science, 432-451.
[71] Yang K., Zhu J., Zhang, M., Yan Q., & Sun O.J. (2010). Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. Journal of Plant Ecology, 3(3), 175-182.
[72] Zangy, E., Kigel, J., Cohen, S., Moshe, Y., Ashkenazi, M., Fragman-Sapir, O., & Osem, Y. (2021). Understory plant diversity under variable overstory cover in Mediterranean forests at different spatial scales. Forest Ecology and Management, 1(494), 119-319.
[73] Zare, M.A. (2010). Data analysis in natural resources research with SPSS software. Tehran University Jihad Publications, 310p. (In Persian)