[1]. Jemni-Damer, N., Guedan-Duran, A., Fuentes-Andion, M., Serrano-Bengoechea, N., Alfageme-Lopez, N., Armada-Maresca, F., Guinea, G.V., Pérez-Rigueiro, J., Rojo, F., Gonzalez-Nieto, D. and Kaplan, D.L. (2020). Biotechnology and biomaterial-based therapeutic strategies for age-related macular degeneration. Part I: Biomaterials-based drug delivery devices. Frontiers in Bioengineering and Biotechnology, 8, 549089.
[2]. West, J. L., and Hubbell, J. A. (1995). Photopolymerized hydrogel materials for drug delivery applications. Reactive Polymers, 25(2-3), 139-147.
[3]. Ashley, G. W., Henise, J., Reid, R., and Santi, D. V. (2013). Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proceedings of The National Academy of Sciences, 110(6), 2318-2323.
[4]. Morales, A., Labidi, J., and Gullón, P. (2022). Influence of lignin modifications on physically crosslinked lignin hydrogels for drug delivery applications. Sustainable Materials and Technologies, 33, e00474.
[5]. Long, L. Y., Weng, Y. X., and Wang, Y. Z. (2018). Cellulose aerogels: Synthesis, applications, and prospects. Polymers, 10(6), 623.
[6]. Ahmadi, F., Oveisi, Z., Samani, S. M., and Amoozgar, Z. (2015). Chitosan based hydrogels: characteristics and pharmaceutical applications. Research in Pharmaceutical Sciences, 10(1), 1.
[7]. Prabaharan, M., and Mano, J. F. (2004). Chitosan-based particles as controlled drug delivery systems. Drug delivery, 12(1), 41-57.
[8]. Peers, S., Montembault, A., and Ladavière, C. (2022). Chitosan hydrogels incorporating colloids for sustained drug delivery. Carbohydrate Polymers, 275, 118689.
[9]. Bernkop-Schnürch, A., and Dünnhaupt, S. (2012). Chitosan-based drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 81(3), 463-469.
[10]. Wang, C., Xiong, Y., Fan, B., Yao, Q., Wang, H., Jin, C., and Sun, Q. (2016). Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation. Scientific Reports, 6(1), 1-9.
[11]. Huang, S., Wu, L., Li, T., Xu, D., Lin, X., and Wu, C. (2019). Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal. International Journal of Biological Macromolecules, 137, 939-947.
[12]. Gao, C., Wang, X., Zhai, S., and An, Q. (2019). Enhanced catalytic activity of nanosilver with lignin/polyacrylamide hydrogel for reducing p-nitrophenol. International Journal of Biological Macromolecules, 134, 202-209.
[13]. Yu, O., and Kim, K. H. (2020). Lignin to materials: A focused review on recent novel lignin applications. Applied Sciences, 10(13), 4626.
[14]. Marcelo, G., Lopez-Gonzalez, M., Trabado, I., Rodrigo, M. M., Valiente, M., and Mendicuti, F. (2016). Lignin inspired PEG hydrogels for drug delivery. Materials Today Communications, 7, 73-80.
[15]. Kumar, R., Butreddy, A., Kommineni, N., Reddy, P.G., Bunekar, N., Sarkar, C., Dutt, S., Mishra, V.K., Aadil, K.R., Mishra, Y.K. and Oupicky, D. (2021). Lignin: drug/gene delivery and tissue engineering applications. International Journal of Nanomedicine, 16, 2419.
[16]. Denes, F., Young, R. A., and Sarmadi, M. (1997). Surface functionalization of polymers under cold plasma conditions-a mechanistic approach. Journal of Photopolymer Science and Technology, 10(1), 91-112.
[17]. Kalagasidis Krušić, M., Ilić, M., and Filipović, J. (2009). Swelling behaviour and paracetamol release from poly (N-isopropylacrylamide-itaconic acid) hydrogels. Polymer Bulletin, 63(2), 197-211.
[18]. Skopinska-Wisniewska, J., Tuszynska, M., and Olewnik-Kruszkowska, E. (2021). Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials, 14(2), 396.
[19]. Aadil, K. R., Barapatre, A., and Jha, H. (2016). Synthesis and characterization of Acacia lignin-gelatin film for its possible application in food packaging. Bioresources and Bioprocessing, 3(1), 1-11.
[20]. Xu, C., Liu, L., Renneckar, S., and Jiang, F. (2021). Chemically and physically crosslinked lignin hydrogels with antifouling and antimicrobial properties. Industrial Crops and Products, 170, 113759.
[21]. Wang, Y., Xiong, Y., Wang, J., and Zhang, X. (2017). Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: Highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 903-913.
[22]. Liu, C., Li, Y., Zhuang, J., Xiang, Z., Jiang, W., He, S., and Xiao, H. (2022). Conductive Hydrogels Based on Industrial Lignin: Opportunities and Challenges. Polymers, 14(18), 3739.
[23]. Barzegar, S., Monfared, M. H. A., and Hubbe, M. (2022). Cellulose and lignin as propitious candidates for preparation of hydrogels for pharmaceutical applications. Materials Today Communications, 104617.
[24]. Ali, D. A., and Mehanna, M. M. (2022). Role of lignin-based nanoparticles in anticancer drug delivery and bioimaging: An up-to-date review. International Journal of Biological Macromolecules. 221, 934-953.
[25]. Răschip, I. E., Panainte, A. D., Pamfil, D., Profire, L., and Vasile, C. (2015). In vitro testing of xanthan/lignin hydrogels as carriers for controlled delivery of bisoprolol fumarare. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi, 119, 1189-1194.