[1]. Galhidy, L., Mihok, B., Hagy, A., Rajkai, K., and Standovar, T. (2006). Effects of gap size and associated changes in light and soil moisture on the understory vegetation of a Hungarian beech forest. Plant Ecology, 183(1): 133-145.
[2]. Weiskittel, A.R. and Hix, D.M. (2003). Canopy gap characteristics of an oak-beech-maple oldgrowth forest in Northeastern Ohio. OHIO Journal Science, 103(4): 111-115.
[3]. Bartsch, N. (2000). Element release in beech (Fagus sylvatica L.) forest gaps. Water Air Soil Pollution, 122: 3-16.
[4]. Persson, T., Rudebeck, A., Jussy, J.H., Colin-Belgrand, M., Prieme, A., Dambrine, E., Karlsson, P.S., and Sjoberg, R.M. (2000). Soil nitrogen turnover-mineralization, nitrification, and denitrification in European forest soils, in: Schulze, E.-D. (Ed.), Carbon and Nitrogen Cycling in European Forest Ecosystems, Ecological Studies 142. Springer, Berlin. 297-331.
[5]. McCauley, A., Jones C., and Jacobsen, J. (2005). Basic soil properties. Soil and Water Management Module, 1(1): 1-12.
[6]. Matinizadeh, M., and Ghodarzi, M. (2013). Effects of fire on activity of some rangeland soil enzymes. Iranian Journal of Range and Desert Research, 20(1): 213-225.
[7]. Makoi, J., and Ndakidemi, P. (2008). Selected soil enzymes: Examples of their potential roles in the ecosystem. African Journal of Biotechnology, 7(3): 181-191.
[8]. Moscatelli, M.C., Lagomarsino, A., Angelis, P.D., and Grego, S. (2005). Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO2. Applied Soil Ecology, 30(9): 162-173.
[9]. Kayang, H., (2001). Fungal and bacterial enzyme activities in Alnus nepalensis D. Don. European Journal of Soil Biology, 37(7): 175-180.
[10]. Xu, J., Xue, L.m and Su, Z. (2016). Impacts of forest gaps on soil properties after a severe ice storm in a Cunninghamia lanceolata stand. Pedosphere, 26: 408-416.
[11]. Kooch, Y., and Haghverdi, K. (2018). Effect of forest canopy gap on soil enzyme activity, dissolved organic matter and organic acids. Iranian Journal of Forest and Poplar research, 25(4): 585-597.
[12]. Ghorbanzadeh, N., Pourbabaei, H., Salehi, A., Soltani Tolarood, A.A., and Alavi, S.J. (2018).
Investigation of the microbial and soil invertebrates’ biodiversity indices of hard wood and soft wood plantations in west of Guilan province. Journal of Applied Soil Research, 6(3): 1-12.
[13]. Booklet of revised forestry plan series 7 Shenroud. (2004). Department of natural resources and watershed Siahkal, 347p.
[14]. Raiesi, F., and Beheshti, A. (2014). Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Applied Soil Ecology, 75: 63-70.
[15]. Taati, S., Rahmani, R., Sagheb-Talebi, Kh., Matinizadeh, M., and Habashi, H. (2015). Influence of gap creation on soil enzymes activity in an oriental beech stand (Case study: Langa control plot). Iranian Journal of Forest and Poplar Research, 23(2): 332-341.
[16]. Miesel, J.R., Boerner, R.E.J., and Skinner, C.N. (2011). Soil nitrogen mineralization and enzymatic activities in fire and fire surrogate treatments in California. Canadian Journal of Soil Science, 91: 935-946.
[17]. Boerner, R.E.J., Waldrop, T.A., and Shelburne, V.B. (2006). Wildfire mitigation strategies affect soil enzyme activity and soil organic carbon in loblolly pine (Pinus taeda) forests. Canadian Journal of Forest Research, 36: 3148-3154.
[18]. Tsai, S.H, Selvam, A., Chang, Y.P., and Yang, S.S. (2009). Soil bacterial community composition across different topographic sites characterized by 16S rRNA gene clones in the Fushan Forest of Taiwan. Botanical Studies, 50(2): 57-68.
[19]. Ni, X., Yang, W., Tan, B., Li, H., He, J., Xu, L., and Wu, F. (2016). Forest gaps slow the sequestration of soil organic matter: a humification experiment with six foliar litters in an alpine forest. Scientific Reports, 6, No. 19744, 12p.
[20]. Kheiri, M., Habashi, H., VaezMoosavi S.M., and Moghimian, N. (2018). Effects of canopy gap on soil macrofauna in mixed beech stand (case study in Shast- Kalate forest). Journal of Human and Environment, 10(34): 101-108.
[21]. Kooch, Y., and Bayranvand, M. (2017). Effect of canopy gaps area on soil biological activities and organic matter fractions in a Beech forest stand. Iranian Journal of Forest, 8(4):533-546.
[22]. Gazanshahi, J. (2006). Soil and Plant Analysis. Homa Publication, Tehran, 272p.