[1]. Zahriban, M., Fallah, A., Shataee, S., and Kalbi, S. (2015). Estimating quantitative forest attributes using Pleiades satellite data and non-parametric algorithms in Darabkola forests, Mazandaran. Iranian Journal of Forest and Poplar Research, 23(3): 1735-0883.
[2]. Mohammadi, J., Shataee, S., Namiranian, M., and Næsset, E. (2017). Modeling biophysical properties of broad-leaved stands in the hyrcanian forests of Iran using fused airborne laser scanner data and UltraCam-D images. International journal of applied earth observation and geoinformation, 61: 32-45.
[3]. Järnstedt, J., Pekkarinen, A., Tuominen, S., Ginzler, C., Holopainen, M., and Viitala, R. (2012). Forest variable estimation using a high-resolution digital surface model. ISPRS Journal of Photogrammetry and Remote Sensing, 74: 78-84.
[4]. Tsui, O. W., Coops, N. C., Wulder, M. A., and Marshall, P. L. (2013). Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass. Remote Sensing of Environment, 139: 340-352.
[5]. Askne, J. I., Soja, M. J., and Ulander, L. M. (2017). Biomass estimation in a boreal forest from TanDEM-X data, lidar DTM, and the interferometric water cloud model. Remote Sensing of Environment, 196: 265-278.
[6]. Soja, M. J., Quegan, S., d’Alessandro, M. M., Banda, F., Scipal, K., Tebaldini, S., and Ulander, L. M. (2020). Mapping above-ground biomass in tropical forests with ground-cancelled P-band SAR and limited reference data. Remote Sensing of Environment, 112153.
[7]. Akhtar, A. M., Qazi, W. A., Ahmad, S. R., Gilani, H., Mahmood, S. A., and Rasool, A. (2020). Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan. Environmental Monitoring and Assessment, 192 (9): 1-17.
[8]. Hirschmugl, M., Deutscher, J., Sobe, C., Bouvet, A., Mermoz, S., and Schardt, M. (2020). Use of SAR and optical time series for tropical forest disturbance mapping. Remote Sensing, 12 (4): 727.
[9]. Pulliainen, J. T., Heiska, K., Hyyppa, J., and Hallikainen, M. T. (1994). Backscattering the C-and X-bands. IEEE Transactions on Geoscience properties of boreal forests at and Remote Sensing, 32 (5): 1041–1050.
[10]. Tanase, M.A., Santoro, M., de La Riva, J., Fernando, P., and Le Toan, T. (2010). Sensitivity of X-, C-, and L-band SAR backscatter to burn severity in Mediterranean pine forests. IEEE Transactions on Geoscience and Remote Sensing, 48(10): 3663–3675.
[11]. Wu, S. T., and Sader, S. A. (1987). Multi polarization SAR data for surface feature delineation and forest vegetation characterization. IEEE transactions on geoscience and remote sensing, (1): 67-76.
[12]. Rignot, E., Way, J., Williams, C., and Viereck, L. (1994). Radar estimates of aboveground biomass in boreal forests of interior Alaska. IEEE Transactions on Geoscience and Remote Sensing, 32 (5): 1117-1124.
[13]. Lone, J. M., Sivasankar, T., Sarma, K., Qadir, A., and Raju, P. (2017). Influence of slope aspect on above ground biomass estimation using ALOS-2 data. International Journal of Science and Research, 6 (6): 1422-1428.
[14]. Golshani, P., Maghsoudi, Y., and Sohrabi, H. (2019). Relating ALOS-2 PALSAR-2 parameters to biomass and structure of temperate broadleaf Hyrcanian forests. Journal of the Indian Society of Remote Sensing, 47(5): 749-761.
[15]. Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D., and Tien Bui, D. (2018). Improving accuracy estimation of Forest Aboveground Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sensing, 10 (2): 172.
[16]. Yazdani, M. Shataee, Sh., Mohammadi, J.; and Maghsoudi, Y. (2020). Comparison of different machine learning and regression methods for estimation and mapping of forest stand attributes using ALOS/PALSAR data in complex Hyrcanian forests. Journal of Applied Remote Sensing, 14 (2): 024509.
[17]. Sharifi, A., and Amini, J. (2015). Forest biomass estimation using synthetic aperture radar polarimetric features. Journal of Applied Remote Sensing, 9 (1): 097695.
[18]. Ramezani, M. R., and Sahebi, M. R. (2015). Forest biomass estimation using SAR and optical images. Journal of Geospatial Information Technology, 3: 15-26.
[19]. Amini, J., and. Sadeghi, Y. (2013). Performance of SAR and optical images in modeling forest biomass. Iranian Journal of Remote Sensing and GIS, 4: 69-82.
[20]. Nouri, M., Shataee, S. S., and Mohammadi, J. (2020). Capability of Alos-Palsar-2 radar quad polarization data for estimation of structural quantitative characteristics of planted forest, Arabdagh region, Iran. Iranian Journal of Forest and Poplar Research, 27 (4):451-463
[21]. Ataee, M.S., Maghsoudi, Y., Latifi, H., and Fadaie, F. (2019). Improving estimation accuracy of growing stock by multi-frequency SAR and multi-spectral data over Iran’s heterogeneously-structured broadleaf Hyrcanian forests. Forests, 10 (8): 641.
[22]. Austin, J. M., Mackey, B. G., and Van Niel, K. P. (2003). Estimating forest biomass using satellite radar: a exploratory study in a temperate Australian Eucalyptus forest. Forest Ecology and Management, 176 (1-3): 575-583.
[23]. Sun, G., Ranson, K. J., and Kharuk, V. I. (2002). Radiometric slope correction for forest biomass estimation from SAR data in the western Sayani Mountains, Siberia. Remote Sensing of Environment, 79 (2-3): 279–287.
[24]. Kim, C. (2012). Quantitative analysis of relationship between ALOS PALSAR backscatter and forest stand volume. Journal of Marine Science and Technology, 20 (6): 624-628.
[25]. Luckman, A. J. (1998). The effects of topography on mechanisms of radar backscatter from coniferous forest and upland pasture. IEEE Transactions on Geoscience and Remote Sensing, 36 (5): 1830-1834.
[26]. Rauste, Y. (1990). Incidence-angle dependence in forested and non-forested areas in Seasat SAR data. International Journal of Remote Sensing, 11(7): 1267-1276.
[27]. Van Zyl, J. J. (1993). The effect of topography on radar scattering from vegetated areas, IEEE Transactions on Geosciences and Remote Sensing, 31 (1): 153–160.
[28]. Soenen, S. A., Peddle, D. R., Hall, R. J., Coburn, C. A., and Hall, F. G. (2010). Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sensing of Environment, 114 (7): 1325-1337.
[29]. Van Zyl, J. J. (1993). The effect of topography on radar scattering from vegetated areas. IEEE Transactions on Geosciences and Remote Sensing, 31(1): 153–160.
[30]. Zahriban Hesari, M., Shataee, Sh., Maghsoudi, Y., Mohammadi, J., Fransson, J. E. S., and Persson, H.J. (2020). Forest variable estimations using TanDEM-X data in Hyrcanian forests. Canadian Journal of Remote Sensing, 46 (2): 166–176.
[31]. Lee, J., and Pottier, E. (2009). Introduction to the polarimetric target decomposition concept. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 1-422.
[33]. Lee, J. S. (1994). Jurkevich, L., Dewaele, P., Wambacq, P., and Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A review. Remote Sensing Reviews, 8 (4): 313-340.
[34]. Mitchard, E. T., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro, N., Williams, M., Ryan, C. M., Lewis, S. L., Feldpausch, T., and Meir, P. (2009). Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36, L23401.
[35]. Carreiras, J. M., Vasconcelos, M. J., and Lucas, R. M. (2012). Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sensing of Environment, 121: 426-442.
[36]. Yu, Y., and Saatchi, S. (2016). Sensitivity of L-band SAR backscatter to aboveground biomass of global forests. Remote Sensing, 8(6): 522.