[1]. Temiz, A., Yildiz,U., Aydin, I., Eikenes, M., Alfredsen, G., Çolakoglü, G. (2005). Surface roughness and color characteristics of wood treated with preservatives after accelerated weathering test. Journal of Applied Surface Science, 250: 35-42.
[2]. George, B., Suttie, E., Merlin, A., Deglise, X. (2005). Photo degradation and photostabilisation of wood the state of the art. Polymer Degradation and Stability, 88: 268-274.
[3]. Dawson, B.S.W., Singh, A.P., Kroese, H.W., Schwitzer, M.A. S., Gallagher, S.J., Riddiough, S. Wu. (2008). Enhancing exterior performance of clear coatings through photostabilisation of wooden surfaces. Part 2: coating and weathering performance. Journal of Coatings Technology and Research, 5: 207–219.
[4]. Evans, P.D., Hasse, J.G., Shakri, A., Seman, B.M., Kiguchi, M. (2015). The search for durable exterior clear coatings for wood. Journal of Coatings, 5: 830-864.
[5]. Schuh, A.E. Theuerer, H.C. (1937). Effect of film thickness on physical properties and exposure behavior. Industrial and Engineering Chemistry, 29: 182-189.
[6]. Aloui, F., Ahajji, A., Irmouli, Y., George, B., Charrier, B., Merlin, A. (2007). Inorganic UV absorbers for the photostabilisation of wood-clear coating systems: comparison with organic UV absorbers. Applied Surface Science, 253: 3737–3745.
[7]. Hill, C.A.S. (2006). Wood modification: chemical, thermal and other processes, Belgium.
[8]. Cao, Y., Jiang, J., Lu, J., Huang, R., Jiang, J.I., Wu, Y. (2012). Color change of chinese fir through steam-heat treatment. BioResources, 7 (3):2809-2819.
[9]. Miklečic, J., Lučic Blagojevič, S., Petrič, M., Jirouš-Rajkovi, V. (2015). Influence of TiO2 and ZnO nanoparticles on properties of waterborne polyacrylate coating exposed to outdoor conditions. Progress in Organic Coatings, 89: 67-74.
[10]. Militz, H., (2002). Thermal treatment of wood. In: European Process and Their Background, the International Research Group on Wood Preservation. IRG:/WP 02-40241, Cardiff, Wales.
[11]. Sow, C., Riedl, B., Blanchet, P. (2010). UV-waterborne polyurethane-acrylate nano composite coatings containing alumina and silica nanoparticles for wood: mechanical, optical, and thermal properties assessment. Journal of Coat Technology Research, 8: 211–221.
[12]. Standard Practice for Atmospheric Environmental Exposure Testing of Nonmetallic Materials, Annual Book of ASTM Standard, G7-97, 2003.
[13]. Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates, Annual Book of ASTM Standard, D2224-02, 2016
[14].Standard Test Method for Evaluating Degree of Surface Disfigurement of Paint Films by Microbial (Fungal or Algal) Growth or Soil and Dirt Accumulation.Annual Book of ASTM Standard, D3274-95.
[15]. Saha, S. Kocaefe, D. Boluk, Y. Pichette, A. (2011). Enhancing exterior durability of Jack Pine by photo-stabilization of acrylic polyurethane coating using bark extract. Part 1: Effect of UV on color change and ATR–FT-IR analysis. Progress in Organic Coatings, 70: 376-382.
[16]. Yildiz, S., Yildiz, U., Cafer, T., Eylem, D. (2011). The effects of natural weathering on the properties of heat-treated alder wood. Journal of Bio resources, 6: 2504- 2521.
[17]. Pandey, K. K., Srinivas, K. (2015). Performance of polyurethane coatings on acetylated and benzoylated rubber wood. European Journal Wood Product, 73: 111-120.
[18]. Saha, S., Kocaefea, D., Boluk, Y., Pichettea, A. (2013). Surface degradation of CeO2 stabilized acrylic polyurethane coated thermally treated jack pine during accelerated weathering. Applied Surface Science, 276: 86-94.
[19]. Shi, L. E., Li, Z. H., Zheng, W., Zhao,Y. F., Jin, Y. F., Tang, Z.-X. (2014). Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles. Food Additives and Contaminates, 31: 173-186.
[20]. Korukluoglu, M., Sahan, Y., Yigit, A. (2008). Antifungal properties of olive leaf extracts and their phenolic compounds. Journal of Food. Safety, 28: 76-87.