Spatial patterns and intra-specific competition of Juniper tree in different life stages using O- ring statistic in Layen Forests, Iran

Document Type : Research Paper

Authors

Abstract

Analyzing spatial patterns of individuals within life stages and spatial associations between different life stages is essential for understanding the spatial and temporal dynamics of populations. This research was conducted to study the spatial patterns and spatial association of Juniper trees (Juniperus polycarpos C. Koch) at different life stages in Juniper forests of Layen, Northeast of Iran. Data collection was done using four one- hectare square sample plots randomly selected, which fully mapped. Spatial patterns and spatial association of different life stages (juvenile, premature and mature; based on crown diameter) were then analyzed using O- ring univariate and bivariate statistics, respectively. Results showed that the general spatial patterns of the trees in total and in every life stage was clumped at least up to 25 m, while after that tends to random distribution at larger scales. Spatial association analyses revealed that there was no significant intra-specific competition among life stages namely, the spatial association was positive (attraction) or indifferent. It is concluded that clump patterns are due to heavy fruit and dispersal limitation of Juniper trees and harsh environmental condition of the study area. 

Keywords


[1].Ali AhmadKorori, S., Khoshnevis, M., and Matinizadeh, M. (2010). Comprehensive studies of Juniperus species in Iran. Forest, Range and watershed management organization of Iran. Pooneh publication, Tehran.
[2]. Wang, X., Ye, J., Li, B., Zhang, J., Lin, F., and Hao, Z. (2010). Spatial distributions of species in an old-growth temperate forest, northeastern China. Canadian Journal of Forest Research, 40(6): 1011-1019.
[3]. Cheng, X., Han, H., Kang, F., Song, Y., and Liu, K. (2014). Point pattern analysis of different life stages of Quercus liaotungensis in Lingkong Mountain, Shanxi Province, China. Journal of Plant Interactions, 9(1): 233-240.
[4]. Hao, Z., Zhang, J., Song, B., Ye, J., and Li, B. (2007). Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. Forest Ecology and Management, 252(1-3): 1-11.
[5]. Wang, Z.F., Peng, S.L., Liu, S.Z., and Li, Z. (2003). Spatial pattern of Cryptocarva chinesis life stage in lower subtropical forest. Botanical Bulletin- Academia Sinica Taipei, 44: 159-166.
[6]. Luis, M.D., Raventos, J., Wiegand, T., and Gonzalez-Hidalgo, J.C., (2008). Temporal and spatial differentiation in seedling emergence may promote species coexistence in Mediterranean fire-prone ecosystems. Ecography, 31(5): 620-629.
[7]. Marin, A. (2011). Spatial analysis of a mixed beech, spruce and fir stand in the eastern Alps.Master thesis of forest and environmental sciences, College of Agricultural Sciences University of Padua, 71 pp.
[8]. Miao, N., Shirong, L., Yu, H., Shi, Z., Moermond, T., and Liu, Y. (2014). Spatial analysis of remnant tree effects in a secondary Abies- Betula forest on the eastern edge of the Qinghai-Tibetan Plateau, China. Forest Ecology and Management, 313: 104-111.
[9]. Akhavan, R., Sagheb-Talebi, Kh., Zenner, E.K., and Safavimanesh, F. (2012). Spatial patterns in different forest development stages of an intact old-growth Oriental beech forest in the Caspian region of Iran. European Journal of Forest Research, 131(5): 1355-1366.
[10]. Karimi, M., Pormajidian, M.R., Jalilvand, H., and Safari, A. (2012). Preliminary study for application of O-ringfunction in determination of small-scale spatial pattern and interaction species (Case study: Bayangan forests, Kermanshah). Iranian Journal of Forest and Poplar Research, 20(4): 608-621.
[11]. Anonymous. (2010). Recognition of suitable areas for tourism in Hezarmasjed Ors plan; basic study. Natural resources and watershed management of Khorasan Razavi province. 245 pp.
[12]. Wiegend, T., and Moloney, K.A. (2004). Rings, circles, and null-models for point pattern analysis in ecology. OIKOS, 104(2): 209-229.
[13]. Salas, C., LeMay, V., Nunez, P., Pacheco, P., and Espinosa, A. (2006). Spatial patterns in an old growth Nothofagus oblique forest in south-central Chile. Forest Ecology and Management, 231: 38-46.
[14]. Nakashizuka, T. (2001). Species coexistence in temperate, mixed deciduous forests. Trends in Ecology and Evolution, 16(4): 205-210.
[15]. Wiegend, T., and Moloney, K.A. (2014). Handbook of Spatial Point-Pattern Analysis in     Ecology. Taylor & Francis. 510 pp.
[16]. Petritan, I.C., Marzano, R., Petritan, A.M., and Lingua, E. (2014). Overstory succession in a mixed Quercus petraea- Fagus sylvatica old growth forest revealed through the spatial pattern of competition and mortality. Forest Ecology and Management, 326: 9-17.
[17]. Zhang, Q., Zhang, Y., Peng, S., Yirdaw, E., and Wu, N. (2009). Spatial structure of Alpine trees in mountain Baima Xueshan on the southeast Tibetan plateau. Silva Fennica, 43(2): 197-208.
[18]. Martinez, I., Wiegand, T., Gonzalez-Taboada, F., and Obesco, J.R. (2010). Spatial associations among tree species in a temperate forest community in North-western Spain. Forest Ecology and Management, 260(4): 456-465.
[19]. Khoshnevis, M. (2010). Rehabilitation of Iran Juniper forests by seedling and sowing in Alborz province. Final report of research project. Research institute of forests and rangelands, 48 pp.
[20]. Yuan, Z.L., Wang, T., Zhu, X.L., Sha, Y.Y., and Ye, Y.Z. (2011). Patterns of spatial distribution of Quercus variabilis in deciduous broadleaf forests in Baotianman nature reserve. Biodiversity Science, 19(2): 224-231.