Modeling the commercial volume of trees in mixed beech stands of Hyrcanian forests through artificial neural network

Document Type : Research Paper

Authors

Research and Science branch, Islamic Azad University, Tehran

Abstract

Predicting the volume of standing trees precisely is the basis of growth rate, amount of allowable harvesting, aboveground biomass carbon sequestration, and the foundation of optimal management according to the sustainable development. New technology of artificial intelligence including artificial neural network (ANN) was applied for modelling and predicting the commercial volume of measured trees in district 3 of Glandroud forests. The data of renewed volume table was acquired from bureau of natural resources and watershed management of Mazandaran province, Nowshahr. Diameter and total height of 150 fallen trees were used as inputs to develop the stage-wise modeling by feed forward back-propagation (FFBP). Two non-linear functions, Logsig and Tansig, were applied as transfer functions. Each function with the same topology showed the different outputs having different accuracies. After initial weighting and training algorithm, transfer functions of neurons had different rotation for decreasing the errors. After each trial, which led to various topology functions, the result showed that the model including diameter and total height with transfer function of Logsig, topology of one hidden layer and fifteen neurons, was the best model to predict the volume of trees in this study. The mentioned model provided the considerable accuracy with the highest coefficient of determination (R2 = 0.99), the least mean squared error of test (MSE) and the least average deviation (AD = 0.158).

Keywords


[1]. Namiranian, M. (2010). measurement of tree and forest biometry. University of Tehran Press, Tehran.
[2]. Bayati, H., and Najafi, A. (2013). Performance Comparison Artificial Neural Networks with Regression Analysis in Trees Trunk Volume Estimation. Journal of Forest and Wood Products, 66 (2): 177-191.
[3]. Ozçelik, R., Diamantopoulou, M.J., Brooks, JR., and Wiant Jr, HV. (2010). Estimating tree bole volume using artificial neural network models for four species in Turkey. Journal of Environmental Management, 91(3): 742-753.
[4]. Atkinson, P.M., and Tatnall, A.R.L. (1997). Introduction neural networks in remote sensing. International Journal of Remote Sensing, 18(4): 699-709.
[5]. Coulson, R.N., Folse, L.J., and Loh, D.K. (1987). Artificial intelligence and natural resource management. Science, (237): 262-267.
[6]. Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauques, J., and Aulagnier, S. (1996). Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90(1): 39-52.
[7]. Hagan, M.T., Demuth, H.B., and Beale, M.H. (1996). Neural Network design. PWS publishing co, United States of America.
[8]. Tiryaki, S., and Aydin, A. (2014). An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 62: 102-108.
[9]. Hamzacebi, C., Akay, D., and Kutay, F. (2009). Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Systems with Application, 36(2): 3839-3844.
[10]. Anonymous. (2008). Glandrood Forest management project, district3, Noor, Mazandarn (second renewal view). General Office of Natural Resources and Watershed Management of Mazandaran province, Nowshahr, 174 p.
[11]. Naghdi, R., and Ghajar, I. (2012). Application of Artificial Neural Network in the Modeling of Skidding Time Prediction. Advanced Materials Research, 403-408: 3538-3543.
[12]. Woods, K., and Bowyer, K.W. (1997). Generating ROC Curves for Artificial Neural Networks. IEEE Transactions on Medical Imaging, 16(3): 329-337.
[13]. Foody, G.M., Boyd, D.S., and Cutler, M.E.J. (2003). Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85(4): 463-474.
[14]. Azizi Ghalaty, S., Rangzan, K., Taghizadeh, A., and Ahmady, Sh. (2015). Application of artificial neural network and ordinary least squares regression in modeling land use changes. Journal of forest and wood products, (68)1: 1-16.
[15]. Bayati, H., Najafi, A., and Abdolmaleki, P. (2016). Assessment of artificial neural networks ability in winching time study of Timber Jack 450C. Journal of Forest and Wood Products, (68)4: 757- 769.
[16]. Feiznia, S., Mohammad Asgari, H., and Moazzami, M. (2008). Investigating the applicability of Neural Network method for estimating daily suspended sediment yield (Case study: Zard Drainage Basin, Khozestan Province). Journal of the Iranian Natural Resources, 60(4): 1199-1210.