[1]. Lin, H.C., and Huang, J.C. (2004). Using Single Image Multi-Processing Analysis Techniques to Estimate the Internal Bond Strength of Particleboard. Taiwan Journal of Forest Science, 19(2): 109-17.
[2]. Faridah, S.I., and Nordin, A.B. (2012). Neural Network Modeling for Fiberboard Proper-ties Prediction, Wseas 13th Cimmacs, Latest Advances in Systems Science and Computational Intelligence. pp: 104-108.
[3]. Ozsahin, S. (2012). ANN for Modeling MA and TS of OSB. 7(1): 1053-1067.
[4]. Fernandez, G., Esteban, F., Palacios L.G., Navarro, P.N., and Conde, M. (2008). Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model. Investigacion Agraria-sistemas Y Recursos Forestales, 17(2): 87-178.
[5]. European Standard EN 317. (1993). Particleboards and fiberboards, determination of swelling in thickness after immersion. European Standardization Committee, Brussels.
[6]. Smith, M. (1993). Neural networks for statistical modeling: Thomson Learning.
[7]. Haykin, S. (1999). Neural networks: A comprehensive foundation. NJ. Prentice-Hall Inc. Englewood Cliffs.
[8]. Jorjani, E., Chehreh Chelgani, S., and Mesroghli, S. (2008). Application of artificial neural networks to predict chemical desulfurization of Tabas coal. Fuel, 87(12): 2727-34.
[9]. Chung, C.H., Chiang, Y.M., and Chang, F.J. (2012). A spatial neural fuzzy network for estimating pan evaporation at ungauged sites. Hydrology and Earth Systems Science, 16; 255-266.
[10]. Kemp, C., Perfors, A., and Tenenbaum, J. (2007). Learning overhypotheses with hierarchical Bayesian models. Developmental Science, 10:307-321.
[11]. Jain, S.K., Nayak, P.C., and Sudheer, K.P. (2008). Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrological Processes, 22: 2225-2234.
[12]. Hill, M.C. (1998). Methods and guidelines for effective model calibration, U.S. Geol. Surv. Water Resources Investigation Report, 90 pp.
[13]. Demirkir, C., Ozsahin, S., Aydin. I., and Colakoglu, G. (2013). Optimization of some panel manufacturing parameters for the best bonding strength of plywood. International Journal of Adhesive, 46:14-20.