[1]. Yuanfa, L., Shaoming, Y., Gangying, H., Yanbo, H., and Zhonghua, Z.H. (2014). Spatial structure of timber harvested according to structure-based forest management. Forest Ecology and Management, 332: 106-116.
[2]. Kint, V., Robert, D.W., and Noel, L. (2004). Evaluation of sampling methods for estimation of structural indices in forest stands. Ecological Modeling, 180: 461-476.
[3]. Chen, J., and Bradshaw, G.A. (1999). Forest structure in space: a case study of an old growth spruce forest in Changbaishan Natural Reserve, PR China. Forest Ecology and Management, 120: 219-233.
[4]. Fonseca, M.G., Martini, A.M.Z., and dos Santos, F.A.M. (2004). Spatial structure of Aspidosperma polyneuron in two semi-deciduous forests in southeast Brazil. Journal of Vegetation Science, 15 (1): 41–48.
[5]. Salas, C., LeMay, V., Nunez, P., Pacheco, P., and Espinosa, A. (2006). Spatial patterns in an old-growth Nothofagus obliqua forest in south-central Chile. Forest Ecology and Management, 231:38-46.
[6]. Nakashizuka, T. (2001). Species coexistence in temperate, mixed deciduous forests. Trends in Ecology and Evolution, 16: 205–210.
[7]. Kohyama, T. (1993). Size-structured tree populations in gap dynamics forest: the forest architecture hypothesis for the stable coexistence of species. Journal of Ecology, 81:131–143.
[8]. Lemay, V., Pommerening, A., and Marshall, P. (2009). Spatio-temporal structure of multi-storied, multi-aged interior Douglas fir (Pseudotsuga menziesii var. glauca) stands. Journal of Ecology, 97: 1062-1074.
[9]. Hara, T., Nishimura, N., and Yamamoto, S. (1995). Tree competition and species coexistence in a cool-temperate old-growth forest in southwestern Japan. Journal of Vegetation Science, 6:565–574.
[10]. Hao, Z., Zhang, J.B., Song, J., and Li, B. (2007). Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. Forest Ecology and Management, 252: 1-11.
[11]. Marvie Mohadjer, M.R. (2005(. Silviculture. University of Tehran Press, Tehran .387 p.
[12]. Marvie Mohadjer, M.R., Zobeiri, M., Etemad, V., and Jour Gholami, M. (2009). Performing the single selection method at compartment level and necessity for full inventory of tree species (Case study: Gorazbon district in Kheyroud Forest). Journal of Iranian Natural Resources, 61(4): 889-908.
[13]. Bayat, M., Namiranian, M., and Zobeiri, M. (2014). Volume, Height and Wood Production Modeling using the Changes in a Nine Years Rotation (Case Study: Gorazbon District in Kheyroud Forest, North of Iran) Journal of Forests and Wood Products, 67(3):423-435.
[14]. Wiegand, T., and Moloney, K.A. (2004). Rings, circles, and null-models for points pattern analysis in ecology. Oikos, 104:209–229.
[15]. Zenner, E.K., Sagheb-Talebi, Kh., Akhavan, R., and Peck, J.E. (2015). Integration of small-scale canopy dynamics smoothes live-tree structural complexity across development stages in old-growth Oriental beech (fagus orientalis Lipsky) forests at the multi-gap scale. Forest Ecology and Management, 335:26-36.
[16]. Graz, P.F. (2004). The behavior of the species mingling index Msp in relation to species dominance and dispersion. European Journal of Forest Research, 123:87-92.
[17]. Wang, X., Ye, J., Li, B., Zhang, J., Lin, F., and Hao Z. (2010). Spatial distributions of species in an old- growth temperate forest, northeastern China. Canadian Journal of Forest Research, 40:1011-1019.
[18]. Freund, J.A., Franklin, J.F., and Lutz, J.A. (2015). Structure of early old-growth Douglas-fir forests in the Pacific Northwest. Forest Ecology and Management, 335: 11–25.
[19]. Cheng, X., Han, H., Kang, F. Song, Y., and Liu, K. (2013). Point pattern analysis of different life stages of Quercus liaotungensis in Lingkong Mountain, Shanxi Province, China. Journal of Plant Interactions, 8:1-9.
[20]. Alijani, V. and Feghhi, J. (2011). Investigation on the Elm (Ulmus glabra Hudson) Spatial Structure to Apply for Sustainable Management (Case Study: Gorazbon district, Kheirud Forest). Journal of Environmental Studies, 60: 35-44.