Effect of Ethylene Vinyl Acetate as an Impact Modifier on Creep Behavior of Wood Flour- Recycled Polypropylene Composites

Document Type : Research Paper

Authors

1 PhD Student, Department of Wood and Paper Science and Technology, Faculty of Natural Resources, Tarbiat Modares University, Noor, I.R. Iran

2 Associate Professor, Department of Wood and Paper Science and Technology, Faculty of Natural Resources, Tarbiat Modares University, Noor, I.R. Iran

3 Professor, Department of Wood and Paper Science and Technology, Faculty of Natural Resources, Tarbiat Modares University, Noor, I.R. Iran

Abstract

The effect of impact modifier on creep behavior of wood flour- recycled polypropylene composites has been evaluated in this work. For this purpose, impact modifier (Ethylene Vinyl Acetate) and recycled polypropylene were mixed with wood flour (50/50% w/w) as well as the impact modifier (0, 3%, 6% and 9%) by a counter-rotating twin-screw extruder to manufacture the wood flour- recycled polypropylene composites specimens. Short term flexural creep test at 30% of ultimate bending load was performed by using flexural creep equipment. The total time to complete every test was 120 min (60 min creep and 60 min recovery). Results revealed that recycled polypropylene reduce creep resistance of wood flour- recycled polypropylene composites. Also results have shown that impact modifier increase the creep deflection, initial creep, final creep, relative creep and decrease creep modulus in composites containing impact modifier. Composites containing virgin polypropylene without impact modifier exhibited higher creep resistance than other composites in this research.

Keywords


[1]. Sakai, S., Yoshida, H., Hirai, Y., Asari, M., Takigami, H., Takahashi, S., Tomoda, K., Peeler, M. K., Wejchert, J., Schmid-Unterseh, T., Douvan, A. R., Hathaway, R., Hylander, L. D., Fischer, C., Oh, G. J., Jinhui, Li., and Chi, N. K. (2011). International comparative study of 3R and waste management policy developments. Journal of Material Cycles and WasteManagement, 13:86–102.
[2]. Ghahri, S. and Kazemi Najafi, S. (2013). A study on creep behavior of wood flour- recycled polypropylene composite. Iranian Journal of Wood and Paper Industries, 3 (2): 1-12.
[3]. Ghahri, S., Kazemi-Najafi, S., Mohebby, B., and Tajvidi, M. (2012). Impact strength improvement of wood flour–recycled polypropylene composites. Journal of Applied Polymer Science, 124: 1074–1080.
[4]. Ghahri, S., Kazemi-Najafi, S., and Mohebby, B. (2012). The Effect of impact modifier on impact strength of recycled polypropylene–wood flour composites. Journal of Forest and Wood Products, 64: 419–433.
[5]. Najafi, A. and Kazemi Najafi, S. (2009). Effect of load levels and plastic types on creep behavior of wood sawdust/ HDPE composite. Journal of Reinforced Plastic Composites, 28: 2645-2653.
[6]. Nourbakhsh, A., Baghlani, F. F., and Ashori, A. (2011). Nano-SiO2 filled rice husk/polypropylene composites: Physico-mechanical properties. Industrial Crops and Products, 33: 183–187.
[7]. Haihong Jiang', D., Kamdem, P., Bezubic, B., and Ruede, P. (2003). Mechanical properties of poly (viny1 chloride)/ wood flour/glass fiber hybrid composites. Journal of Vinyl & Additive Technology, 9 (3): 138-145.
[8]. Oksman, K. and Clemons, C. (1998). Mechanical properties and morphology of impact modified polypropylene-wood flour composites. Journal of Applied Polymer Science, 67:1503-1513.
[9]. Hristov V. N. and Vasileva S. T. (2004). Deformation mechanisms and mechanical properties of modified polypropylene/wood fiber composites. Polymer Composite, 25, (5): 521-526.
[10]. Ghahri, S., Kazemi-Najafi, S., and Mohebby, B. (2012). Effect of impact modifier type on water absorption and thickness swelling parameters of wood flour- recycled polypropylene composites. Journal of Wood and Paper Industries, 2, (2): 15-25.
[11]. Xu, Y., Wu, Q., Lei, Y., Yao, F., and Zhang, Q. (2008). Natural fiber reinforced poly (vinyl chloride) composites: effect of fiber type and impact modifier. Journal of Polymer Environment, 16: 250–257.
[12]. Lee, S. Y., Yang, H. S., Kim, H. I., Jong, C. S., Lim, B. S., and Lee, J. N. (2004). Creep behavior and manufacturing parameters of wood flour filled polypropylene composite. Composite Structures, 65:459-469.
[13]. Kazemi Najafi, S., Mostafazadeh, M., Chaharmahali, M., and Tajvidi, M. (2008). The effects of filler content and water absorption on creep behavior of HDPE waste/MDF flour composites. Journal of Iranian Polymer Science and Technology, 21(1): 53-59.
[14]. Park, B. D. and Balatinecz, J. (1998). Short term flexural creep behavior of wood fiber/polypropylene composites. Polymer Composites, 19(4): 377-382.
[15]. Xu, Y., Wu, Q., Lei, Y., and Yao, F. (2010). Creep behavior of bagasse fiber reinforced polymer composites. Bioresource Technology, 101: 3280–3286.
[16]. Bledzki, A. K. and Faruk, O. (2004). Creep and impact properties of wood fiber- polypropylene composite: influence of temperature and moisture content. Composite Science and Technology, 64: 693-700.
[17]. Kazemi Najafi, S., Sharifinia, H., and Tajvidi, M. (2008). Effects of water absorption on creep behavior of wood–plastic composites. Journal of Composite Materials, 42(10): 993-1002.
[18]. Nikrai, J., Kazemi Najafi, S., and Ebrahimi, Gh. (2009). A comparative study on creep behavior of wood flour-polypropylene composite, medium density fiberboard (MDF) and particle board. Journal of Iranian Polymer Science and Technology, 21: 53-59.
[19]. Shojaei, A., Yousefian, H., and Saharkhiz, S. (2007). Performance characterization of composite materials based on recycled high-density polyethylene and ground tire rubber reinforced with short glass fibers for structural applications. Journal of Applied polymer Science, 104:1-8.
[20]. Canevarolo, S. V. (2000). Chain scission function for polypropylene degradation during multiple extrusions. Polymer Degradation and Stability, 709: 71-76.