Effect of Osmopriming on Germination Indices of Salinity-Affected Seeds of Pinus eldarica Medw

Document Type : Research Paper

Authors

1 M.Sc. Student, Faculty of Natural Resources, Tarbiat Modares University, Noor, I.R. Iran

2 Professor, Faculty of Natural Resources, Tarbiat Modares University, Noor, I.R. Iran

3 Assistant Professor, Faculty of Agriculture, University of Lorestan, Khorram-Abad, I.R. Iran

4 Ph.D. Student, Faculty of Natural Resources, Tarbiat Modares University, Noor, I.R. Iran

Abstract

To answer this question that if osmopriming improve germination indices in salinity-affected seeds of Pinus eldarica Medw., a factorial experiment in randomized completely design was carried out with three replications. Osmotic treatments were applied in 5 levels (-2, -4, -6 and -8 bar for 72 hours and non-primed) by polyethylene glycol (PEG) and salinity treatments in 8 levels (0, 40, 80, 120, 160, 200, 240 and 280 mM) by sodium chloride. The results showed that osmopriming, salinity and their interaction had significant effect on seed germination indices. Germination of non-primed seeds ceased in salinity stress higher than 160 mM, but primed seeds were able to germinate in 280 mM. In all salinity levels, primed seeds (particularly, -2 bar) had highest germination speed, germination energy and vigor index and lower variation for relative germination percentage, showing the positive effect of osmopriming technique on improving germination indices in salinity-affected seeds of Pinus eldarica.

Keywords


 
 
[1]. Chinnusamy, V., Jagendorf, A., and Zhu, J. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45: 437-448.
[2]. Al-Karaki, G.N. (2001). Germination, sodium and potassium concentrations of barley seeds as influenced by salinity. Journal of Plant Nutrition, 24(3): 511–522.
[3]. Gallardo, K., Job, C., Groot, S.P., Puype, M., Demol, H., Vandekerckove, J., and Job, D. (2001). Proteomic analysis of Arabidopesis seed germination and priming. Plant Physiology, 126(2): 835- 848.
[4]. Turk, M.A., Tahawa, R.M., and Lee, K.D. (2004). Seed germination and seedling growth of three lentil cultivars under moisture stress. Asian Journal of Plant Sciences, 3(3): 394-397.
[5]. Francodantas, B., De Saribeiiro, L., and Albertoaragao, C. (2005). Phisiological response of cowpea seeds to salinity stress. Revista Brasileira de Sementes, 27(1): 89-121.
[6]. Huang, Z., Zhang, X., Zheng, G., and Gutterman, Y. (2003). Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. Journal of Arid Environments, 55(3): 453-464.
[7]. Ganatsas, P.P., and Tsakaldimi, M.N. (2007). Effect of light condition and salinity on germination behaviour and early growth of umbrella pine (Pinus pinea L.) seed. Journal of Horticultural Science and Biotecnology, 82(4): 605-610.
[8]. Kiani Abari, A., Hosseini Nasr, M., Hojjati, M., and Bayat, D. (2011). Salt effects on seed germination and seedling emergence of two Acacia species. African Journal of Plant Science, 5(1): 52-56.

[9]. Ashraf, M., and Foolad, M.R. (2005). Pre-sowing seed treatment-a shotgun approach to improve germination growth and crop yield under saline and none-saline conditions. Advances in Agronomy, 88(1): 223-271.

[10]. Bradford, K.J. (1986). Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScienc, 21(1): 1105-1 112.

[11]. Naglreiter, C., Reichenauer, T.G., Goodman, B.A., and Bolhar-Nordonkampf, H.R. (2005). Free radical generation in Pinus sylvestris and Larix deciduas seeds primed with polyethylene glycol or potassium salt solution. Plant Physiology and Biotechnology, 43(2): 117-123.
[12]. Brancalion, P.H.S., Novembre, A.D.L.C., Rodrigues, R.R., and Tay, D. (2008). Priming of Mimosa bimucronata seeds: a tropical tree species from Brazil. Acta Horticulturae, 782(3): 163-168.
[13]. Brancalion, P.H.S., Tay, D., Novembre, A.D.L.C., Rodrigues, R.R., and Fillo, J.M. (2010). Priming of pioneer tree Guazuma ulmifolia (Malvaceae) seed evaluated by an automated computer image analysis. Scientia Agricola, 67(3): 274-279.
[14]. Tavili, A., Zare, S., Javadi, S.A., and Enayati, A. (2011). Effects of seed priming on germination characteristics of Bromus species under salt and drought conditions. American-Eurasian Journal Agricultural and Environmental Sciences, 10(2): 163-168.
[15]. Zhang, M.. Wang, Z., Yuan, L., Yin, C., Cheng, J., Wang, L., Huang, J., and Zhang, H. (2012). Osmopriming improves tomato seed vigor under aging and salinity stress. African Journal of Biotechnology, 11(23): 6305-6311.
[16]. Makkizadeh, M., Farhoudi, R., and Rastifar, M. (2012). Effect of osmopriming on seed germination of Lemon balm (Melissa officinalis L.) under salinity stresses. Iranian Journal of Medicinal and Aromatic Plants, 27(4): 586-573.
[17]. Michel, B.E., and Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5): 914-916.
[18]. Verma, S.K., Bjpai, G.C., Tewari, S.K., and Singh, J. (2005). Seedling index and yield as influenced by seed size in pigeon pea. Legume Research, 28(2): 389-396.
[19]. Janmohammadi, M., Moradi Dezfuli, P., and Sharifzadeh, F. (2008). Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stresses. Plant Physiology, 34(3-4): 215-226.
[20]. Abdul-Baki, A.A., and Anderson, J.D. (1970). Viability and leaching of sugars from germinating barley. Crop Science, 10(1): 630-633.
[21]. Rehman, S., Harris P.J.C., Bourne, W.F., and Wikin J. (1996). The effect of sodium chloride on germination and the potassium and calcium contents of Acaciaseeds. Seed Science and Technology, 25(1): 277-285.
[22]. Ghiyasi, M., Abrahim Seyahjani, A., Tajbakhsh, M., Amirnia, R., and Salehzadeh, H. (2008). Effect of osmopriming with polyethylene glycol (8000) on germination and seedling growth of wheat (Triticum aestivum L.) seeds under salt stress. Research Journal of Biological Sciences, 3(10): 1249-1251.