[1] Allen, M., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S. & Kainuma, M. (2018). Special report: Global warming of 1.5 C. Intergovernmental Panel on Climate Change (IPCC), 677, 393.
[2] Goheer, M. A., Fatima, L., Farah, H., Hassan, S.S. & Abbas, N. (2023). Assessment of change in forests land, carbon stock and carbon emissions of KPK, Pakistan for past three decades using geospatial techniques. Journal of Water and Climate Change, 14(2), 442-453.
[3] Kassaye, M., Emiru, E., Derebe, Y. & Tsega, A. (2025). Carbon stock dynamics in Ethiopian forests; a systematic review for sustainable forest management towards climate change mitigation. Trees, Forests and People, 20, 100841.
[4] Maghsodlonejad, M., Bonyad, A. & Shataee, S. (2020). Estimation stock and economic value of carbon storage of Juniperus excelsa in Gorgan Chahar Bagh. Forest and Wood Products, 72(4), 301-311.
[5] Mora, B., Herold, M., De Sy, V., Wijaya, A., Verchot, L. & Penman, J. (Eds.). (2013). Capacity development in national forest monitoring. CIFOR.
[6]. Alam, A., Kilpeläinen, A. & Kellomäki, S. (2008). Impacts of thinning on growth, timber production and carbon stocks in Finland under changing climate. Scandinavian Journal of Forest Research, 23(6), 501-512.
[7] Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P. & Bater, C. W. (2018). Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 216, 697-714.
[8] Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D., Alonso, A., Anderson-Teixeira, K.J., Andrade, A., Baltzer, J., Becker, K.M. & Blomdahl, E.M. (2018). Global importance of large‐diameter trees. Global Ecology and Biogeography, 27(7), 849-864.
[9] Kazempour Larsary, M., Pourbabaei, H., Sanaei, A., Salehi, A., Yousefpour, R. & Ali, A. (2021). Tree-size dimension inequality shapes aboveground carbon stock across temperate forest strata along environmental gradients. Forest Ecology and Management, 496, 119482.
[10] Ali, A. & Mattsson, E. (2017). Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka. Science of the Total Environment, 575, 6-11.
[11] Van Con, T., Thang, N.T., Khiem, C.C., Quy, T. H., Lam, V.T., Van Do, T. & Sato, T. (2013). Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam. Forest Ecology and Management, 310, 213-218.
[12] Zhang, Y., Chen, H.Y. & Reich, P.B. (2012). Forest productivity increases with evenness, species richness and trait variation: a global meta‐analysis. Journal of Ecology, 100(3), 742-749.
[13] Storch, F., Dormann, C.F. & Bauhus, J. (2018). Quantifying forest structural diversity based on large-scale inventory data: a new approach to support biodiversity monitoring. Forest Ecosystems, 5(1), 1-14.
[14] Ali, A., Yan, E.R., Chen, H.Y., Chang, S.X., Zhao, Y.T., Yang, X.D. & Xu, M.S. (2016). Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 13(16), 4627-4635.
[15] Blankenship, R. E. (2021). Molecular mechanisms of photosynthesis. John Wiley & Sons.
[16] Nowak, D. J., Hoehn, R. & Crane, D.E. (2007). Oxygen production by urban trees in the United States. Arboriculture & Urban Forestry, 33(3), 220-226.
[17] Dobrović, I., Safner, T., Jelaska, S.D. & Nikolić, T. (2006). Ecological and phytosociological characteristics of the association Abieti-Fagetum» pannonicum « Rauš 1969 prov. on Mt. Medvednica (NW Croatia). Acta Botanica Croatica, 65(1), 41-55.
[18] Nord-Larsen, T., Vesterdal, L., Bentsen, N.S. & Larsen, J.B. (2019). Ecosystem carbon stocks and their temporal resilience in a semi-natural beech-dominated forest. Forest Ecology and Management, 447, 67-76.
[19] Van Winckel, S., Simons, J., Lhermitte, S. & Muys, B. (2025). Assessing the effect of forest management on above-ground carbon stock by remote sensing. Biogeosciences, 22(16), 4291-4307.
[20] Yan, L., Meng, S., Yang, F., Dai, X. & Wang, H. (2023). Changes in Forest Vegetation Carbon Storage and Its Driving Forces in Subtropical Red Soil Hilly Region over the Past 34 Years: A Case Study of Taihe County, China. Forests, 14(3), 602.
[21] Siemonsmeier, A., Förster, B. & Markus, B. (2020). Forest structures and carbon storage in managed and unmanaged forests along an altitudinal gradient in a Central European low mountain range. CABI Databases, 19, 71-88.
[22] Noormets, A., Epron, D., Domec, J.C., McNulty, S.G., Fox, T., Sun, G. & King, J.S. (2015). Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management, 355, 124-140.
[23] Dié, A., De Ridder, M., Cherubini, P., Kouamé, F.N., Verheyden, A., Kitin, P., Toirambe, B.B., Van den Bulcke, J., Van Acker, J. & Beeckman, H. (2015). Tree rings show a different climatic response in a managed and a non-managed plantation of teak (Tectona grandis) in West Africa. Iawa Journal, 36(4), 409-427.
[24] Kern, C.C., Kenefic, L.S., Kuehne, C., Weiskittel, A.R., Kaschmitter, S.J., D'Amato, A.W., Dey, D.C., Kabrick, J.M., Palik, B.J. & Schuler, T.M. (2021). Relative influence of stand and site factors on aboveground live-tree carbon sequestration and mortality in managed and unmanaged forests. Forest Ecology and Management, 493, 119266.
[25] Eshaghirad, J., Seyedi, N. & Hasanzad, N.I. (2010). Effect of single selection method on woody species diversity (case study: Janbe sara district-Guilan). Iranian journal of Forest, 1(4), 275-285.
[26] Seyd, S. Z., Moayeri, M. H., & Mohammadi, J. (2015). Comparison of tree species diversity in the beech managed (selection cutting) and unmanaged forest stands (Case study: Shastkalateh Forest-Gorgan). Journal of Plant Research, 28(4), 784-793.
[27] Schall, P., Gossner, M.M., Heinrichs, S., Fischer, M., Boch, S., Prati, D., Jung, K., Baumgartner, V., Blaser, S., Böhm, S. & Buscot, F. (2018). The impact of even‐aged and uneven‐aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of applied Ecology, 55(1), 267-278.
[28] Torras, O., & Saura, S. (2008). Effects of silvicultural treatments on forest biodiversity indicators in the Mediterranean. Forest Ecology and Management, 255(8-9), 3322-3330.
[29] Nasiri, N., Marvie Mohadjer, M. R., Etemad, V., Sefidi, K., Mohammadi, L. & Gharehaghaji, M. (2018). Natural regeneration of oriental beech (Fagus orientalis Lipsky) trees in canopy gaps and under closed canopy in a forest in northern Iran. Journal of Forestry Research, 29(4), 1075-1081.
[30] Cai, W., He, N., Li, M., Xu, L., Wang, L., Zhu, J., Zeng, N., Yan, P., Si, G., Zhang, X. & Cen, X. (2022). Carbon sequestration of Chinese forests from 2010 to 2060: Spatiotemporal dynamics and its regulatory strategies. Science Bulletin, 67(8), 836-843.
[31] Seedre, M., Kopáček, J., Janda, P., Bače, R. & Svoboda, M. (2015). Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian Forest: Effects of stand age and elevation. Forest Ecology and Management, 346, 106-113.
[32] Sidor, C. G., Popa, I., Vlad, R. & Cherubini, P. (2015). Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees, 29(4): 985-997.
[33] Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W., Minkkinen, K. & Byrne, K.A. (2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137(3-4), 253-268.
[34] Kazempour Larsary, M., Pourbabaei, H., Salehi, A., Yousefpour, R. & Ali, A. (2025). Tree-based attributes of large trees more effectively regulate aboveground carbon stock than trait-based ones in temperate deciduous forests. Plant Diversity, 47, 653-665.