[1] Schmidt, C., Krauth, T. & Wagner, S. (2017). Export of plastic debris by rivers into the sea. Environmental Science & Technology, 51(21), 12246-12253.
[2] Shaghaleh, H., Xu, X. & Wang, S. (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 8(2), 825-842.
[3] Nechyporchuk, O., Belgacem, M.N. & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2-25.
[4] Antony Jose, S., Cowan, N., Davidson, M., Godina, G., Smith, I., Xin, J. & Menezes, P. L. (2025). A comprehensive review on cellulose Nanofibers, nanomaterials, and composites: Manufacturing, properties, and applications. Nanomaterials, 15(5), 356.
[5] Espinosa, E., Rol, F., Bras, J. & Rodríguez, A. (2020). Use of multi-factorial analysis to determine the quality of cellulose nanofibers: Effect of nanofibrillation treatment and residual lignin content. Cellulose, 27(18), 10689-10705.
[6] Desmaisons, J., Boutonnet, E., Rueff, M., Dufresne, A. & Bras, J. (2017). A new quality index for benchmarking of different cellulose nanofibrils. Carbohydrate Polymers, 174, 318-329.
[7] Balea, A., Fuente, E., Tarrés, Q., Pèlach, M.À., Mutjé, P., Delgado-Aguilar, M., Blanco, A. & Negro, C. (2021). Influence of pretreatment and mechanical nanofibrillation energy on properties of nanofibers from Aspen cellulose. Cellulose, 28(14), 9187-9206.
[8] Lizumi, Y., Kato, Y. & Okazaki, T. (2025). Particle size and porosity measurements of cellulose nanofibers in slurries using centrifugal sedimentation. Cellulose, 32(3), 1597-1605.
[9] Ämmälä, A., Sirviö, J. A., Laitinen, O., Liimatainen, H., Evikari, O., Siljander, S. & Björkqvist, T. (2025). Apparent specific surface area as an indicator of the degree of cellulose microfibrillation. Cellulose, 32(2), 797-809.
[10] Brännvall, E. & Aulin, C. (2022). CNFs from softwood pulp fibers containing hemicellulose and lignin. Cellulose, 29(9), 4961-4976.
[11] Wakabayashi, M., Fujisawa, S., Saito, T. & Isogai, A. (2020). Nanocellulose film properties tunable by controlling degree of fibrillation of TEMPO-oxidized cellulose. Frontiers in Chemistry, 8, 37.
[12] Naderi, A., Lindström, T., and Sundström, J. (2015). Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose. Cellulose, 22(2), 1147-1157.
[13] Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., and Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal, 29(10), 786-794.
[14] Albornoz-Palma, G., Henriquez-Gallegos, S., Ortega-Sanhueza, I., Teruel-Juanes, R., Ribes-Greus, A. & Pereira, M. (2025). Influence of hemicellulose and lignin on the fibrillation efficiency and properties of cellulose nanofibrils from native and oxidized Eucalyptus nitens and Pinus radiata pulps. Cellulose, 1-20.
[15] Yuan, T., Zeng, J., Wang, B., Cheng, Z., & Chen, K. (2021). Lignin containing cellulose nanofibers (LCNFs): Lignin content-morphology-rheology relationships. Carbohydrate Polymers, 254, 117441.
[16] Almeida, R.O., Ramos, A., Kimiaei, E., Österberg, M., Maloney, T.C. & Gamelas, J.A. (2024). Improvement of the properties of nanocellulose suspensions and films by the presence of residual lignin. Cellulose, 31(18), 10951-10967.
[17] Zhang, X., Zhang, L., Fan, Y. & Wang, Z. (2023). The case-dependent lignin role in lignocellulose nanofibers preparation and functional application-A review. Green Energy & Environment, 8(6), 1553-1566.
[18] Dias, M. C., Zidanes, U. L., Martins, C. C. N., de Oliveira, A.L.M., Damásio, R.A.P., de Resende, J.V., de Barros Vilas Boas, E.V., Belgacem, M.N., Tonoli, G.H.D. & Ferreira, S. R. (2022). Influence of hemicellulose content and cellulose crystal change on cellulose nanofibers properties. International Journal of Biological Macromolecules, 213, 780-790.
[19] Moser, C., Lindström, M. E., & Henriksson, G. (2015). Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers. BioResources, 10(2), 2360-2375.
[20] Oliaei, E., Lindén, P.A., Wu, Q., Berthold, F., Berglund, L. & Lindström, T. (2020). Microfibrillated lignocellulose (MFLC) and nanopaper films from unbleached kraft softwood pulp. Cellulose, 27(4), 2325-2341.