[1] Escobar Nunez, E., Gheisari, R. & Polycarpou, A.A. (2019). Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribology International, 129(3), 92-111.
[2] Liskiewicz, T., Sherrington, I., Khan, T. & Liu, Y. (2023). Advances in sensing for real-time monitoring of tribological parameters. Tribology International, 189(10), 108965-108983.
[3] Presilla, R., Wandel, S., Stammler, M., Grebe, M., Poll, G. & Glavatskih, S. (2023). Oscillating rolling element bearings: A review of tribological testing and analysis approaches. Tribology International, 188(9), 108805-108827.
[4] Aldousiri, B., Shalwan, A. & Chin, C.W. (2013). A review on tribological behavior of polymeric composites and future reinforcements. Advances in Materials Science and Engineering, 9(1), 48-54.
[5] Li, B., Li, P., Zhou, R., Feng, X.O. & Zhou, K. (2022). Contact mechanics in tribological and contact damage-related problems: A review. Tribology International, 171, 107534-107545.
[6] Xue, Q.J & Wang, Q.H. (1997). Wear mechanisms of polyetheretherketone composites filled with various kinds of SiC. Wear, 213(1-2), 54-58.
[7] Chattopadhyay, R. (2004). Advanced Thermally Assisted Surface Engineering Processes, New York, Springer, 375.
[8] Rabinowicz, E. (2013). Friction and Wear of Materials (2nd Edition), New York, Wiley, 336.
[9] George, S.C., Thomas, S., Sarath, P.S., Haponiuk, J.T. & Reghunath R. (2023). Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites, Elsevier, 482.
[10] Klyosov, AA. (2007). Wood-Plastic Composites. John Wiley & Sons, Inc. Hoboken, New Jersey, USA, 702.
[11] Oksman, K. & Sain, M. (2008). Wood-Polymer Composites. Cambridge, Woodhead Publishing Ltd, 384.
[12] Li, X., Tabil, L.G. & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber reinforced composites: A review. Journal of Polymers and the Environment, 15(1), 25-33.
[13] Susheel, K., Kaith, B.S. & Inderjeet, K. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites: A review. Polymer Engineering & Science, 49(2), 1253-1272
[14] Tjong, S.C. (2006). Structural and mechanical properties of polymer nanocomposites. Journal of Material Science Engineering, 53(3-4), 73-197.
[15] Viswanathan, V., Laha, T., Balani, K., Agarwal, A. & Seal, S. (2006). Challenges and advances in nanocomposites processing techniques; A review. Journal of Material Science Engineering, 54(5-6), 121-285.
[16] Dufresne, A., Thomas, S. & Pothan L.A. (2013). Biopolymer Nanocomposites Processing, Properties, and Applications. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 684.
[17] Umar Nirmal, U., Hashim, J. & Megat Ahmad, M.H. (2015). A review on tribological performance of natural fiber polymeric composites. Tribology International, 83(8), 77-104.
[18] Omrani, E., Menezes, P.L. & Rohatgi, P.K. (2016). State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal, 19(2), 717-736.
[19] Jan, P., Matkovi, S., Bek, M., Perse, S.L. & Kalin, M. (2023). Tribological behavior of green wood-based unrecycled and recycled polypropylene composites. Wear, (524-525).
[20] Rafiq Bhat, A., Kumar, R. & Kumar Mural, P.S. (2023). Natural fiber reinforced polymer composites: A comprehensive review of tribo‐mechanical properties. Tribology International, 189(6), 108978-108990.
[21] Hashmi, S.A.R., Dwivedi, U.K. & Chand, N. (2007). Graphite modified cotton fiber reinforced polyester composites under sliding wear conditions. Wear, 262(11-12), 1426-1432,
[22] Hamdan, Abdul, S.M., Idrus, M., Rahman, R. Ibrahim, N.F. & Islam, S. (2010). Wear of wood polymer composite for journal bearing materials. Wood Research Journal, 1(1), 22-26.
[23] Kaymakci, A., Ayrilmis, N. & Gulec, T. (2013). Surface properties and hardness of polypropylene composites filled with sunflower stalk flour. BioResources, 8(1), 592-602.
[24] Shakuntala,O., Raghavendra, G. & Samir Kumar, A. (2014). Effect of filler loading on mechanical and tribological properties of wood apple shell reinforced epoxy composite. Advances in Materials Science and Engineering, 2(1), 70-79.
[25] Jiang, L., He, C., Li, X. & Fu, J. (2018). Wear properties of wood-plastic composites pretreated with a stearic acid-palmitic acid mixture before exposure to degradative water conditions. BioResources, 13(2), 3817-3831.
[26] Ibrahim, M.A., Hirayama, T. & Khalaf, D. (2019). An investigation into the tribological properties of wood flour reinforced polypropylene composites. Materials Research Express, 7(1), 153-165.
[27] Amir Hooman Hemmasi, A.H., Khademi-Eslam, H., Talaiepoor, M., Kord, B. & Ghasemi, I. (2010). Effect of nanoclay on the mechanical and morphological properties of wood polymer nanocomposite. Journal of Reinforced Plastics and Composites, 29(7), 964-971.
[28] Ashori, A., Sheshmani, S. & Farhani, F. (2013). Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes. Carbohydate Polymer, 92(1): 865-871.
[29] Chaharmahali, M., Ebrahimi, G.H., Hamzeh, Y., Ashori, A. & Ghasemi, I. (2014). Effects of nanographene on the physico-mechanical properties of bagasse/polypropylene composites. Polymer Bulletin, 71: 337–349.
[30] Mohseni-Tabar, M., Tabarsa, T., Mashkour, M. & Khazaeian, A. (2015). Using silicon dioxide (SiO2) nano-powder as reinforcement for walnut shell flour/HDPE composite materials. Journal of the Indian Academy of Wood Science, 12(1), 15-21.
[30] Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, Annual Book of ASTM Standard, G99, 2010.
[32] Standard Test Method for Rubber Property-Durometer Hardness, Annual Book of ASTM Standard, D2240, 2015.
[33] Standard Test Method for Tensile Properties of Plastics, Annual Book of ASTM Standard, D638, 2014.
[34] Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Annual Book of ASTM Standard, D790, 2017.
[35] Xian, G., Walter, R. & Haupert, F. (2006). Friction and wear of epoxy/TiO2 nanocomposites: Influence of additional short carbon fibers, aramid and PTFE particles. Composites Science and Technology, 66(16), 3199-3209.
[36] Meng, H., Xie, G.Y. & Yang, R. (2009). Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition. Composites Science and Technology, 69(5), 606-611.
[37] Zhenhua, L. (2012). The friction and wear properties of nano-SiO2 and TiO2 particle reinforced PMMA composites. Journal of Thermoplastic Composite Materials, 27(6), 793-800.
[38] Cui, L.J., Geng, H.Z., Wang, W.J., Chen, L.T. & Gao, J. (2013). Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon, 54(3), 277-282.
[39] Sheykh, M.J., Tarmian, A., Doosthoseini, K. & Abdulkhani, A. (2017). Wear resistance and friction coefficient of nano-SiO2 and ash-filled HDPE/lignocellulosic fiber composites. Polymer Bulletin, 74(11), 4537-4547.
[40] Soni, A., Kumar Das, P. & Kumar Gupta, S. (2024). Experimental investigations on the influence of natural reinforcements on tribological performance of sustainable nanocomposites: A comparative study with polymer technology. Tribology International, 191(1), 109195-109202.
[41] Ul Ain, Q., Wani, M.F., Sehgal, R. & Singh, M.K. (2024). Tribological and mechanical characterization of carbon-nanostructures based PEEK nanocomposites under extreme conditions for advanced bearings: A molecular dynamics study. Tribology International, 196(11), 109702-109711.
[42] Solodov, A.N., Balkaev, A.D., Shayimova, J.R., Vakhitov, R. & Gataullina, R.M. (2024). Enhanced wear resistance and mechanical properties of epoxy nanocomposites through surface-concentrated magnetic and luminescent graphene oxide. Tribology International, 204(5), 110504-110516.