[1] Zaki, M., Abdul Khalil, H.P.S., Sabaruddin, F.A., Bairwan, R.D., Oyekanmi, A.A., Alfatah, T. & Abdullah, C.K. (2021). Microbial treatment for nanocellulose extraction from marine algae and its applications as sustainable functional material. Bioresource Technology Reports, 16, 100811.
[2] Devani, B. M., Sangani, V.P. & Jani, B.L. (2025). Application of bionanocomposites in food packaging: A novel approach toward greener packaging. Plant Archives, 25(Special Issue ICTPAIRS-JAU), 507-516.
[3] Zhou, S., Nyholm, L., Strømme, M. & Wang, Z. (2019). Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Accounts of Chemical Research, 52(8), 2232-2243
[4] Sandhya, P.V., Naseeha Farsana, M.N. & Femina, K.S. (2023). Nanocellulose from Cladophora: Applications. In Handbook of Biopolymers (pp. 877-906). Springer Nature Singapore, Singapore.
[5] Suciyati, S.W., Manurung, P., Sembiring, S. & Situmeang, R. (2021). Comparative study of Cladophora sp. cellulose by using FTIR and XRD. In Journal of Physics: Conference Series, 1751(1): 012075. IOP Publishing.
[6] Abdel Hamid, E.M., Mohamed, A.E., Mohamed, A.A., Galal, A.A., Mekhemr, A.A., Saleh, E.S. & Elgendy, S.K. (2025). Optimization of corn starch/glycerol, acetic acid, and cellulose fibers ratio on biodegradable plastic synthesis by Box–Behnken design (BBD). Clean Technologies and Environmental Policy, 1-23.
[7] Stefanowska, K., Bucher, M., Reichert, C.L., Sip, A., Woźniak, M., Schmid, M., Kowalczyk, T., Nowak, A. & Ratajczak, I. (2024). Chitosan-based films with nanocellulose and propolis as active packaging materials. Industrial Crops and Products, 219, 119112.
[8] Chen, Y.W., Lee, H.V., Juan, J.C. & Phang, S.M. (2016). Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers, 151, 1210–1219.
[9] Bettaieb, F., Khiari, R., Dufresne, A., Mhenni, M., Putaux, J. & Boufi, S. (2015). Nanofibrillar cellulose from Posidonia oceanica: Properties and morphological features. Industrial Crops and Products, 72, 97-106.
[10] de Lima, G.G., Zakaluk, I.C.B., Artner, M.A., Pedro, A.C., Gonzalez de Cademartori, P.H., Muniz, G.I.B.D. & Magalhães, W.L.E. (2025). Enhancing Barrier and Antioxidant Properties of Nanocellulose Films for Coatings and Active Packaging: A Review. ACS Applied Nano Materials, 8(9), 4397-4421.
[11] Samiee, S., Ahmadzadeh, H., Hosseini, M. & Lyon, S. (2019). Algae as a source of microcrystalline cellulose. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts (pp. 331-350). Woodhead Publishing, Cambridge, UK.
[12] Aysu, T., Maroto‑Valer, M.M. & Sanna, A. (2016). Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in‑situ pyrolysis. Bioresource Technology, 208, 140-148.
[13] Baghel, R.S., Reddy, C.R.K. & Singh, R.P. (2021). Seaweed‑based cellulose: Applications, and future perspectives. Carbohydrate Polymers, 267(10), 118241.
[14] Kim, H.M., Wi, S.G., Jung, S., Song, Y. & Bae, H.-J. (2015). Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresource Technology, 175, 128–134.
[15] Korzen, L., Pulidindi, I.N., Israel, A., Abelson, A. & Gedanken, A. (2015). Single step production of bioethanol from the seaweed Ulva rigida using sonication. RSC Advances, 5(21), 16223-16229.
[16] Michalak, I. & Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33(1), 133-166.
[17] Steven, S., Mardiyati, Y., Mar’atus Shoimah, S., Rizkiansyah, R.R., Santosa, S.P. & Suratman, R. (2021). Preparation and Characterization of Nanocrystalline Cellulose from Cladophora sp. Algae. International Journal on Advanced Science, Engineering and Information Technology, 11(3), 1035-1041.
[18] Munir, M., Qureshi, R., Bibi, M. & Khan, A.M. (2019). Pharmaceutical aptitude of Cladophora: A comprehensive review. Algal Research, 39, 101476.
[19] Mihranyan, A. (2011). Cellulose from cladophorales green algae: From environmental problem to high‑tech composite materials. Journal of Applied Polymer Science, 119(4), 2449–2460.
[20] Bogolitsyn, K., Parshina, A., Novoselov, N., Muravyev, A., Abramova, E., Khviuzov, S., Shestakov, S. & Kozhevnikov, A. (2025). Physicochemical aspects of hydrogel preparation from algal cellulose. International Journal of Biological Macromolecules, 310, 143499.
[21] Jmel, M.A., Anders, N., Messaoud, G.B., Marzouki, M.N., Spiess, A. & Smaali, I. (2019). The stranded macroalga Ulva lactuca as a new alternative source of cellulose: Extraction, physicochemical and rheological characterization. Journal of Cleaner Production, 234, 1421-1427.
[22] Asadi, F., Nazarnezhad, N. & Attoeii, G.A. (2016). Preparation of nano-cellulose from Cladophora, fibrous algae, and utilizing it to improve the strength properties of CMP pulp. Iranian Journal of Wood and Paper Science Research, 31(4), 695-702. (In Persian)
[23] Doh, H., Lee, M.H., & Whiteside, W.S. (2020). Physicochemical characteristics of cellulose nanocrystals isolated from seaweed biomass. Food Hydrocolloids, 102: 105542.
[24] Machado, B., Costa, S.M., Costa, I., Fangueiro, R. & Ferreira, D.P. (2024). The potential of algae as a source of cellulose and its derivatives for biomedical applications. Cellulose, 31(6), 3353-3376.
[25] He, Q., Wang, Q., Zhou, H., Ren, D., He, Y., Cong, H. & Wu, L. (2018). Highly crystalline cellulose from brown seaweed Saccharina japonica: isolation, characterization and microcrystallization. Cellulose, 25(10), 5523-5533.
[26] Mihhels, K., Yousefi, N., Blomster, J., Solala, I., Solhi, L. & Kontturi, E. (2023). Assessment of the Alga Cladophora glomerata as a Source for Cellulose Nanocrystals. Biomacromolecules, 24(11), 4672-4679.
[27] Chirayil, C.J., Joy, J., Mathew, L., Mozetic, M., Koetz, J., & Thomas, S. (2014). Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products, 59, 27-34.
[28] Yue, X., Xu, Y., Li, X. & Xu, Y. (2017). Purification of cellulose from bleached pulp by Lewis base-enhanced high-temperature liquid water treatment. BioResources, 12(4), 8725-8733.
[29] Patrichi, C.A.M., Cioroiu Tirpan, D.R., Aljanabi, A.A.A., Trica, B., Gifu, I.C. & Dobre, T. (2023). Extraction of Cellulose from Ulva lactuca Algae and Its Use for Membrane Synthesis. Polymers, 15(24), 4673.
[30] Tan, X.Y., Abd Hamid, S.B. & Lai, C.W. (2015). Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass and Bioenergy, 81, 584-591.
[31] Xiang, Z., Gao, W., Chen, L., Lan, W., Zhu, J.Y. & Runge, T. (2016). A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose, 23(1), 493-503.
[32] Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
[33] Duygu, D.Y., Udoh, A.U., Ozer, T.B., Akbulut, A., Erkaya, İ.A., Yildiz, K. & Guler, D. (2012). Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African Journal of Biotechnology, 11(16), 3817-3824.
[34] Dmytryk, A., Saeid, A. & Chojnacka, K. (2014). Biosorption of microelements by Spirulina: Towards technology of mineral feed supplements. The Scientific World Journal, 2014, 356328.
[35] Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S.Y. & Sheltami, R.M. (2012). Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19(3), 855-866.
[36] Hospodarova, V., Singovszka, E. & Stevulova, N. (2018). Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American Journal of Analytical Chemistry, 9(6), 303-310.
[37] Fernando, I.P., Sanjeewa, K.K., Samarakoon, K.W., Lee, W.W., Kim, H.S., Kim, E.A. & Jeon, Y.J. (2017). FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae. Algae, 32(1), 75-86.
[38] Pereira, L., Gheda, S.F. & Ribeiro-Claro, P.J. (2013). Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. International Journal of Carbohydrate Chemistry, 2013(1), 537202.
[39] Yahya, M.B., Lee, H.V., & Hamid, S.B.A. (2015). Preparation of Nanocellulose via Transition Metal Salt-Catalyzed Hydrolysis Pathway. BioResources, 10(4), 7627-7639.
[40] Saelee, K., Yingkamhaeng, N., Nimchua, T. & Sukyai, P. (2016). An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization. Industrial Crops and Products, 82, 149-160.
[41] Pereira, L., Sousa, A., Coelho, H., Amado, A.M. & Ribeiro-Claro, P.J. (2003). Use of FTIR, FT-Raman and 13 C-NMR spectroscopies for identification of some seaweed phycocolloids. Biomolecular Engineering, 20(4), 223-228.
[42] Pereira, L. (2017). Vibrational spectroscopy of seaweed polysaccharides. In Seaweed Polysaccharides (pp. 83-100). Elsevier, Amsterdam.