[1] Seppelt, R., Dormann, C.F., Eppink, F.V., Lautenbach, S. & Schmidt, S. (2011). A quantitative review of ecosystem service studies: Approaches, shortcomings and the road ahead. Journal of Applied Ecology, 48(3), 630-636.
[2] Sing, L., Metzger, M.J., Paterson, J.S. & Ray, D. (2018). A review of the effects of forest management intensity on ecosystem services for northern European temperate forests with a focus on the UK. Forestry: An International Journal of Forest Research, 91(2), 151-164.
[3] Pohjanmies, T., Triviño, M., Le Tortorec, E., Mazziotta, A., Snäll, T. & Mönkkönen, M. (2017). Impacts of forestry on boreal forests: An ecosystem services perspective. Ambio, 46(7), 743–755.
[4] Martín-López, B. & Montes, C. (2010). Funciones y servicios de los ecosistemas: una herramienta para la gestión de los espacios naturales. In Guía científica de Urdaibai, 1, 13–32.
[5] Mason, W. L. & Connolly, T. (2014). Mixtures with spruce species can be more productive than monocultures: Evidence from the Gisburn experiment in Britain. Forestry: An International Journal of Forest Research, 87(2), 209-217.
[6] Biber, P., Borges, J. G., Moshammer, R., Barreiro, S., Botequim, B., Brodrechtova, Y., ... & Sallnäs, O. (2015). How sensitive are ecosystem services in European forest landscapes to silvicultural treatment? Forests, 6(12), 1666-1695.
[7] Clarke, N., Gundersen, P., Jönsson-Belyazid, U., Kjønaas, O. J., Persson, T., Sigurdsson, B. D., Stupak, I. & Vesterdal, L. (2015). Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems. Forest Ecology and Management, 351, 9-19.
[8] Luyssaert, S., Marie, G., Valade, A., Chen, Y.-Y., Njakou Djomo, S., Ryder, J., Otto, J., Naudts, K., Lansø, A. S., Ghattas, J. & McGrath, M.J. (2018). Trade-offs in using European forests to meet climate objectives. Nature, 562(7726), 259-262.
[9] Thom, D. & Seidl, R. (2016). Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews, 91(3), 760-781.
[10] Michalski, K., Wieruszewski, M., Starosta-Grala, M. & Adamowicz, K. (2023). Classification of financial risks in Polish modern forestry. Drewno. Prace Naukowe. Doniesienia. Komunikaty,Wood. Research Papers. Reports. Announcements, 66(212), 177426.
[11] Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S. & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28, 1-16.
[12] Tavankar, F., Picchio, R., Venanzi, R., Latterini, F. & Nikooy, M. (2025). Restoring soil features and biodiversity indicators in managed forests to the levels of protected forests: After one silvicultural rotation period. Forests, 16(2), 274.
[13] Sefidi, K. (2023). Rare species impacts on structural complexity index (SCI) in the Hyrcanian beech forests. Forest Research and Development, 9(2), 205-219.
[14] Karamdoost Marian, B., Alijanpour, A., Banj Shafiei, A., Sasanifar, S. & Álvarez-Álvarez, P. (2024). Effects of single-tree selective harvest method on ecosystem services in a mixed temperate broadleaf forest in Iran. Frontiers in Forests and Global Change, 7, 1461996.
[15] Dai, E., Zhu, J., Wang, X. & Xi, W. (2018). Multiple ecosystem services of monoculture and mixed plantations: A case study of the Huitong experimental forest of Southern China. Land Use Policy, 79, 717-724.
[16] Sasanifar, S., Alijanpour, A., Shafiei, A. B., Rad, J. E., Molaei, M. & Azadi, H. (2019). Forest protection policy: Lesson learned from Arasbaran biosphere reserve in Northwest Iran. Land Use Policy, 87, 104057.
[17] Sasanifar, S., Alijanpour, A., Shafiei, A.B., Rad, J.E., Molaei, M. & Álvarez-Álvarez, P. (2024). Understanding how forest ecosystem services are affected by conservation practices and differences in elevation: A study in the Arasbaran biosphere reserve, Iran. Ecological Engineering, 203, 107230.
[18] Paluots, T., Liira, J., Leis, M., Laarmann, D., Põldveer, E., Franklin, J.F. & Korjus, H. (2024). Long-term cumulative effect of management decisions on forest structure and biodiversity in hemiboreal forests. Forests, 15(11), 1-22.
[19] Akhavan, R. & Hassani, M. (2023). Quantifying the structure of pure beech forests using spatial structural indices (case study: Hyrcanian forests of Mazandaran province, Iran). Forest Research and Development, 9(2), 221-235.
[20]McElhinny, C.; Gibbons, P.; Brack, B. & Bauhus, J. (2005). Forest and woodland stand structural complexity: Its definition and measurement Forest Ecology and Management. 2005, 218(1-3), 1-24
[21] Picchio, R., Mercurio, R., Venanzi, R., Gratani, L., Giallonardo, T., Lo Monaco, A., Frattaroli, A.R. & Tavankar, F. (2018). Strip clear-cutting application and logging typologies for renaturalization of pine afforestation—A case study. Forests, 9(6), 366.
[22] Karamzadeh, S., Nikooy, M., Abkenari, K. T., Tavankar, F., Lo Monaco, A. & Picchio, R. (2023). The relationship between stand structure and tree growth form—Investigating the effects of selection cuttings in mountainous mixed beech forests. Forests, 14(9), 1861.
[23] Sohrabi, H., Jourgholami, M., Tavankar, F., Venanzi, R. & Picchio, R. (2019). Post-harvest evaluation of soil physical properties and natural regeneration growth in steep-slope terrains. Forests, 10(11), 1034.
[24] Campetella, G., Canullo, R., Gimona, A., Garadnai, J., Chiarucci, A., Giorgini, D. & Bartha, S. (2016). Scale-dependent effects of coppicing on the species pool of late successional beech forests in the central Apennines, Italy. Applied Vegetation Science, 19(3), 474-485.
[25] Espahbodi, K., Khorankeh, S. & Ghaffari, F. (2021). The impact of consecutive, shelter and single tree selection system on quantitative characteristics of oriental beech forest in the Muzisay section forest, plan of Haftkhal2, Neka forest. Iranian Journal of Forest, 13(2), 209-220.
[26] Lotfi, R., Hojjati, S. M., Pourmajidian, M.R. & Espahbodi, K. (2022). The effect of Silvicultural Methods on the Structural Characteristics of Forest Stand and Soil Properties in the Intermediate Hyrcanian Beech Forests (Case study: Alandan-Sari Series Forests). Ecology of Iranian Forests, 10(20), 11–22.
[27] Hasanzadnavrodi, I. & seyedzadeh, S.H. (2013). Effects of Shelterwood Method on Some Important Forest Stands Features in Shafarood District Nine of Guilan. Ecology of Iranian Forests, 1(2), 41-56.
[28] Schumann, M.E., White, A.S. & Witham, J.W. (2003). The effects of harvest-created gaps on plant species diversity, composition, and abundance in a Maine oak-pine forest. Forest Ecology and Management, 176(1-3), 543-561.
[29] Paillet, Y., Bergès, L., Hjältén, J., Ódor, P., Avon, C., Bernhardt-Römermann, M., Bijlsma, R.-J., De Bruyn, L., Fuhr, M., Grandin, U., Kanka, R., Lundin, L., Luque, S., Magura, T., Matesanz, S., Mészáros, I., Sebastià, M.-T., Schmidt, W., Standovár, T., Vandekerkhove, K. (2010). Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conservation Biology, 24(1), 101-112.
[30] Schulze, E. D., Aas, G., Grimm, G. W., Gossner, M. M., Walentowski, H., Ammer, C., Kühn, I., Bouriaud, O. & von Gadow, K. (2016). A review on plant diversity and forest management of European beech forests. European Journal of Forest Research, 135(1), 51-67.
[31] Marage, D. & Lemperiere, G. (2005). The management of snags: A comparison in managed and unmanaged ancient forests of the Southern French Alps. Annals of Forest Science, 62(2), 135-142.
[32] Hansen, A.J., Spies, T.A., Swanson, F.J. & Ohmann, J.L. (1991). Conserving biodiversity in managed forests. BioScience, 41(6), 382-392.
[33] Taheri Abkenar, K., Mirzaei, M., Mohammadi, M.A., Saeidi, H.R. 2022. Effects of dead trees on natural regeneration of beech trees in different physiographic conditions (case study: Siahroud forests, Langaroud). Journal of Forest Research and Development, 8(3), 235-247.
[34] North, M.P., Franklin, J.F., Carey, A.B., Forsman, E.D. & Hamer, T. (1999). Forest stand structure of the northern spotted owl’s foraging habitat. Forest Science, 45(4), 520-527.
[35] Nagaike, T. & Hayashi, A. (2004). Effects of extending rotation period on plant species diversity in Larix kaempferi plantations in central Japan. Annals of Forest Science, 61(3), 197-202.
[36] Shimatani, K. (2001). On the measurement of species diversity incorporating species differences. Oikos, 93(1), 135-147.
[37] Poldveer, E., Potapov, A., Korjus, H., Kiviste, A., Stanturf, J.A., Arumäe, T., Kangur, A. & Laarmann, D. (2021). The structural complexity index SCI is useful for quantifying structural diversity of Estonian hemiboreal forests. Forest Ecology and Management, 490, 119093.
[38] Peck, J.E., Zenner, E.K., Brang, P. & Zingg, A. (2014). Tree size distribution and abundance explain structural complexity differentially within stands of even-aged and uneven-aged structure types. European Journal of Forest Research, 133(2), 335-346.
[39] Zenner, E. K., Peck, J.E., Lähde, E. & Laiho, O. (2012). Decomposing small-scale structural complexity in even- and uneven-sized Norway spruce-dominated forests in southern Finland. Forestry, An International Journal of Forest Research, 85(1), 41-49.