[1]. Abdi, E., Salimizand, M., and Mousavi, F. (2019). The impact of different methods of Atterberg limits determination on the resulted Unified soil classification. Iranian Journal of Forest, 10, 403-413.
[2]. Milton, E. J., Schaepman, M. E., Anderson, K., Kneubühler, M., and Fox, N. (2009). Progress in field spectroscopy. Remote Sensing of Environment, 113, S92-S109.
[3]. Iranian Space Agency. (2020). Spectroscopy Applications: https://rs.isa.ir//index.php?module=cdk&func=loadmodule&system=cdk&sismodule=user/content_view.php&sisOp=view&ctp_id=602&cnt_id=52517&id=3761
[4]. Daughtry, C. S., Walthall, C. L., Kim, M. S., De Colstoun, E. B., and McMurtrey Iii, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229-239.
[5]. Malek, M. H., Berger, D. E., and Coburn, J. W. (2007). On the inappropriateness of stepwise regression analysis for model building and testing. European Journal of Applied Physiology, 101(2), 263-264.
[6]. Huang, Z., Turner, B. J., Dury, S. J., Wallis, I. R., and Foley, W. J. (2004). Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment, 93(1-2), 18-29.
[7]. Mousavi, F., Abdi, E., Ghalandarzadeh, A., Bahrami, H., and Majnounian, B. (2019). Laboratory evaluation of the PLSR method to estimate Atterberg limits of soil by field spectroscopy, Iranian Journal of Forest. 11, 151-164.
[8]. Abbasi, M., Darvishsefat, A.A., and Schaepman, M. (2010). Comparison of adaxial and abaxial spectral reflectance of Fagus orientalis Lipsky and Carpinus betulu using field spectroradiometer and spectral indices. Iranian Forest Journal, Iranian Forestry Association, 3, 263-272.
[9]. Kokaly, R. F. (2010). Spectroscopic analysis for material identification and mapping using PRISM, an ENVI/IDL based software package, Proceedings of IGARSS 2010.
[10]. Mousavi, F., Abdi, E., Fatehi, P., Ghalandarzadeh, A., Bahrami, H. A., Majnounian, B., and Ziadi, N. (2021). Rapid determination of soil unconfined compressive strength using reflectance spectroscopy. Bulletin of Engineering Geology and the Environment, 80(5), 3923-3938.
[11]. Thompson, B. (1995). Stepwise regression and stepwise discriminant analysis need not apply here: A guidelines editorial. Educational and Psychological Measurement, 55(4), 525-534.
[12]. Diek, S., Chabrillat, S., Nocita, M., Schaepman, M. E., and de Jong, R. (2019). Minimizing soil moisture variations in multi-temporal airborne imaging spectrometer data for digital soil mapping. Geoderma, 337, 607-621.
[13]. Akan, R., Keskin, S. N., and Uzundurukan, S. (2015). Multiple regression model for the prediction of unconfined compressive strength of jet grout columns. Procedia Earth and Planetary Science, 15, 299-303.
[14]. Mousavi, F., Abdi, E., Ghalandarayeshi, S., and Page-Dumroese, D. S. (2021). Modeling unconfined compressive strength of fine-grained soils: Application of pocket penetrometer for predicting soil strength. Catena, 196, 104890.
[15]. Etemad, V., Moridi., M., and Sefidi, K. (2017). Quantification of the horizontal structure of mixed Fagus stands in the evolutionary phase of rootstock reduction. Forest and Wood Products, 4, 647-656.
[16]. Yitagesu, F. A., van der Meer, F., van der Werff, H., and Zigterman, W. (2009). Quantifying engineering parameters of expansive soils from their reflectance spectra. Engineering Geology, 105(3-4), 151-160.
[17]. Gomez, C., Lagacherie, P., and Coulouma, G. (2008). Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma, 148(2), 141-148.
[19]. Fatehi, P., Damm, A., Schaepman, M. E., and Kneubühler, M. (2015). Estimation of alpine forest structural variables from imaging spectrometer data. Remote Sensing, 7(12), 16315-16338.
[20]. Mobasheri, M. R., Amani, M., Beikpour, M., and Mahdavi, S. (2019). Soil moisture content estimation using water absorption bands. Geomatica, 73(3), 63-73.
[21]. Main, R., Cho, M. A., Mathieu, R., O’Kennedy, M. M., Ramoelo, A., & Koch, S. (2011). An investigation into robust spectral indices for leaf chlorophyll estimation ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 751-761.
[22]. Townshend, J. R., and Justice, C. O. (1986). Analysis of the dynamics of African vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 7(11), 1435-1445.
[23]. Wu, C., Niu, Z., Tang, Q., and Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148(8-9), 1230-1241.
[24]. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., and Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126.
[25]. Rondeaux, G., Steven, M., and Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95-107.
[26]. Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., and Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2-3), 416-426.
[27]. Haubrock, S. N., Chabrillat, S., Lemmnitz, C., and Kaufmann, H. (2008). Surface soil moisture quantification models from reflectance data under field conditions. International Journal of Remote Sensing, 29(1), 3-29.
[28]. Fabre, S., Briottet, X., and Lesaignoux, A. (2015). Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm domain. Sensors, 15(2), 3262-3281.
[29]. Middleton, E. M., Huemmrich, K. F., Landis, D. R., Black, T. A., Barr, A. G., and McCaughey, J. H. (2016). Photosynthetic efficiency of northern forest ecosystems using a MODIS-derived Photochemical Reflectance Index (PRI). Remote Sensing of Environment,187, 345-366.
[30]. Ma, S., Zhou, Y., Gowda, P. H., Dong, J., Zhang, G., Kakani, V. G., and Jiang, W. (2019). Application of the water-related spectral reflectance indices: A review. Ecological Indicators, 98, 68-79.
[31]. Kokaly, R. F., and Clark, R. N. (1999). Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 67(3), 267-287.
[32]. Curran, P. J., Dungan, J. L., and Peterson, D. L. (2001). Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 76(3), 349-359.
[33]. Sanches, I. D. A., Souza Filho, C. R., and Kokaly, R. F. (2014) Spectroscopic remote sensing of plant stress at leaf and canopy levels using the chlorophyll 680nm absorption feature with continuum removal. ISPRS Journal of Photogrammetry and Remote Sensing, 97, 111–122.