[1]. Cekovská, H., Gaff, M., Osvald, A., Kačík, F., Kubš, J., and Kaplan, L. (2017). Fire resistance of thermally modified spruce wood. BioResorces, 12(1): 947-959.
[2]. Martinka, J., Hroncová, E., Chrebet, T., and Balog, K. (2014). The influence of spruce wood heat treatment on its thermal stability and burning process. European Journal of Wood and Wood Products, 72(4): 477-486.
[3]. Gašparík, M., Osvaldová, L.M., Čekovská, H., and Potůček, D. (2017). Flammability characteristics of thermally modified oak wood treated with a fire retardant. BioResources, 12(4): 8451-8467.
[4]. Osvald, A., and Gaff, M. (2017). Effect of thermal modification on flameless combustion of spruce wood. Wood Research, 62(4): 565-574.
[5]. Fazeli, A., and Talaei, A. (2019). The effect of heat treatment and primary impregnation of Fir wood with borax on the fire resistance and thermal behavior. Wood and Forest Science and Technology Research, 25 (4): 71-86.
[6]. Uner, I.H., Deveci, I., Baysal, E., Turkoglu, T., Toker, H., and Peker, H. (2016). Thermal analysis of Oriental beech wood treated with some borates as fire retardants. Maderas. Ciencia y tecnología, 18(2): 293-304.
[7]. Parsapuzhou, D. Hejazi, S. Karimi, A., Dost Hosseini, K. and Akhtari, M. (2003). The Effect of fire retardants (Mono Ammonium Phosphate and Borax, Minalite and Pyresot) on Iranian Maple (Acer insigne Boiss). Iranian Journal of Natural Resources, 56 (3): 257-270.
[8]. Lowden, L.A., and Hull, T.R. (2013). Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews, 2(4): 1-19.
[9]. Hao, J., and Chow, W. K. (2003). A brief review of intumescent fire retardant coatings. Architectural Science Review, 46(1): 89-95.
[10]. Puri. R.G., and Khanna, AS. (2017). Intumescent coatings: A review on recent progress. Journal of Coatings Technology and Research, 14(1): 1-20.
[11]. Chuang, Sh., Tsai, K.C., Wang, MK., Ko, C.H., and Luen, S.I. (2009). Impact of the intumescent formulation of styrene acrylic-based coatings on the fire performance of thin painted red lauan (Parashorea spp.) plywood. European Journal of Wood and Wood Products, 67: 407-415.
[12]. Xu, Z., Chu, Z., and Yan, L. (2018). Enhancing the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings by introducing boric acid as synergistic agent. Journal of Thermal Analysis and Calorimetry, 135(5): 1–12.
[13]. Roux, M.L., and Podgorski, L. (2000). The advantages of having in the future a European accelerated weathering test for wood finishes. Surface Coatings International. 83(8): 399-403.
[14]. EN ISO 11925-2 (2002) Reaction to fire tests for building products – Ignitability of building products subjected to direct impingement of flame – Part 2: Single-flame source test.
[15]. Xing, D., and Li, J. (2014). Effects of heat treatment on thermal decomposition and combustion performance of Larix spp. wood. BioResources, 9(3): 4274-4287.
[16]. Uner, I. H., Deveci, I., Baysal, E., Turkoglu, T., Toker, H., and Peker, H. (2016). Thermal analysis of Oriental beech wood treated with some borates as fire retardants. Maderas. Ciencia y tecnología, 18(2): 293-304.
[17]. Bahrani, B., Hemmati, V., Zhou, A., and Quarles, S.L. (2018). Effects of natural weathering on the fire properties of intumescent fire retardant coatings. Fire and Materials, 42(4): 413-423.
[18]. Wang, Q., Li, J., and Winandy, J.E. (2004). Chemical mechanism of fire retardance of boric acid on wood. Wood Science and Technology, 38(5): 375-389.
[19]. Harada, T., Matsunaga, H., Kataoka, Y., Kiguchi, M., and Matsumura, J. (2009). Weatherability and combustibility of fire-retardant-impregnated wood after accelerated weathering tests. Journal of Wood Science, 55(5): 359-366.
[20]. Roberts, T.A., Shirvill, L. C., Waterton, K., and Buckland, I. (2010). Fire resistance of passive fire protection coatings after long-term weathering. Process Safety and Environmental Protection, 88(1): 1-19.